-
予測分析ツールおすすめ7選比較!AIで予測できること・無料ツールはある?
将来の売上や株価を予測することができれば、ビジネスや投資において非常に有利に動けます。しかし、人の勘や経験に頼った予測には限界があり、正確な予測をすることは困難です。 そこで、あらゆる業界で「予測分析ツール」が注目されています。予測分析ツールを使えば、膨大なデータを分析し、過去の傾向をもとに未来を予測できます。さらに、機械学習や人工知能を使った予測分析ツールを活用すれば、誤差を減らしてより高い精度で予測を行うことができます。 本記事では、予測分析ツールでどんなことが予測できるのか、おすすめの予測分析ツールをご紹介します。AIやツールを使った予測に興味がある方は、ぜひ参考にしてみてください。
-
マーケティングへの機械学習の適用方法・事例をご紹介
近年は機械学習(Machine Learning:ML)が大きな進化を遂げており、マーケティング分野にも数多く利用されています。Webサイト上のチャットボットによる顧客対応や、自動で最適な広告枠を入札するプログラマティックバイイングなど、従来は人手で行なっていた作業や、人では対応しきれなかった領域に機械学習が活用されているのです。 また、日常生活においてもほとんどのスマートフォンには音声アシスタント機能が搭載されています。文字を入力せず音声認識によって調べものをする人も増えており、今後はAI音声アシスタントがマーケティングに直結してくる可能性は高いでしょう。 AIや機械学習のマーケットは飛躍的な成長を遂げており、生活や仕事において活躍する機会が増えています。つまり今後のマーケティングにおいては、機械学習をいかに活用できるかが大きなカギを握ります。 本記事では、機械学習をマーケティングに適用する方法や実際の活用事例を紹介します。今後マーケターの仕事がどのように変化していくのか、押さえておきたい方はぜひ参考にしてみてください。
-
消費財・日用品業界におけるAIの活用とは?需要予測や開発などを徹底解説
日用品・消費財業界では、AIはどのように活用されているのでしょうか。 日用品・消費財業界は、美容や健康だけではなくエコや利便性などの消費者の要望に対応するため、日々変化し続けています。変化を継続することで消費者を引きつけ、売上を維持し他社に負けないようにしているのです。 AIの活用はこのような日用品・消費財企業の変化には欠かせません。AIを活用して消費者行動や購買習慣を分析することで、研究開発や商品企画、広告宣伝、D2Cを実施しています。また、需要予測においても従来の方法からAIの活用へと移り、最高水準の予測値で消費者の要望に対応しようと努めているのです。 当記事では日用品・消費財業界のAIの活用事例をふまえながらまとめました。ぜひ最後までご覧ください。
-
食品業界のAI活用方法を、事例8点を交えてご紹介
近年、AIの進化はさまざまな業界に変革をもたらしています。食品業界においても、より豊かな食生活を実現するためにAIの活用を目指す動きが増えてきました。また、世界的にみても食料廃棄率の高さは大きな問題となっており、食品企業が果たす社会的な役割についても注目度が高まっています。 今回は、食品業界におけるAIの活用方法について、8つの事例を挙げながら解説します。食品業界が抱える課題を解決するヒントとなりうる領域なので、是非参考にしてください。
-
化粧品業界のAI活用事例10選をご紹介
どのような業界・業種でもAIを活用するには導入・開発前のロードマップを適切に作ることが欠かせません。 自社のどのような課題に対して、どのデータを蓄積していき、業務を改善するのか、それを認識するのが最初のステップです。 その際に参考になるのが、業界・業種別のAI活用事例です。今回は、化粧品業界におけるAIの活用事例を紹介します。 ぜひ、貴社のビジネスの参考にしてみてください。
-
不動産業におけるAI技術:AI活用領域と、事例をご紹介
不動産業界は他の業界に比べて、AIの進出が遅いといわれているため、今のうちに導入できれば多くのメリットを享受できるかもしれません。そこで本記事では不動産業界におけるAIの活用領域や、AI導入のメリット・デメリットを解説します。
-
AI導入の失敗例と、成功のポイントとは?
AI導入の失敗はよくあること。「AIはすごいらしい」という時期は過ぎ、AIを導入する企業は確実に増加しています。日々の生活でもAIに遭遇することが増え、AI導入の検討段階に入ったという企業もあるでしょう。 今回は、AI導入の悪い事例を具体的に紹介します。失敗の原因を知り、自社の取り組みの際の参考にしてみてください。
-
データサイエンティストは消える?仕事がなくなるというのは本当?
データサイエンティストという職業をご存じでしょうか。スマホを手に生活をするスタイルに移行したことで、膨大なデータ(ビッグデータ)が日々生まれています。これらのデータを企業の課題解決に活かすことが、データサイエンティストの仕事と言えます。そのため、ビジネスとITどちらの世界にも精通することが求められます。 企業側の需要も高まり、高い年収も見込まれるようになりました。そのため、データサイエンティストを目指す学生・ビジネスマンが増える傾向にあります。 一方で、データを扱うという業務から「将来的にAIに取って代わられて、データサイエンティストは消えるのではないか?」という議論も生まれています。 その観点から、データサイエンティストの仕事内容、将来性、重要性、また最新のAIの動向も含めて紹介していきます。
-
小売業界におけるAI需要予測の実例や、進め方、ツールをご紹介
小売業界で、AIの活用が進んでいることはご存知でしょうか。 これまで人の管理に依存していた、在庫や発注管理をAIが代わりに担うようになってきています。 AIを活用することで、担当者の主観に頼らずデータを分析でき、より確度の高い予測ができるといったメリットがあります。 AIを使った商品の需要予測にはどのようなメリットがあるのか、具体的な事例を踏まえてご紹介していきます。
-
AI・機械学習による需要予測のメリットは?高い予測精度を実現する方法を解説
昨今、多くの企業で『需要予測』が注目されています。目まぐるしく変わる社会の変化に合わせて、無駄なく製品の提供するには需要予測が欠かせません。 需要予測の目的は、「消費者が製品を必要とするタイミングや量を予測し、適切に供給する」ことにあります。 精度の高い需要予測を実現することで、人・物・コストの流れを最適化することができ、企業によっては数億円のインパクトになることもあるでしょう。 これまで、需要予測はベテラン従業員のKDD(*1)に頼る傾向がありました。近年では「AI」「機械学習」などを活用した新しい手法も身近になりました。 本記事で『需要予測』について、そのメリットや最新のAI・機械学習を活用方法について解説していきます。 (*1) KKDとは日本語の「経験」(KEIKEN)、「勘」(KAN)、「度胸」(DOKYOU)の頭文字を取ってできた言葉で、製造業を中心に職人の技として尊重されてきた手法です。
-
データサイエンティストには簡単になれるのか?今後求められる視点を解説
近年注目されているデータサイエンティストという職種。そもそもデータサイエンティストとはビッグデータから必要な情報を抽出して、企業の問題解決をしていく職業です。本記事ではデータサイエンティストになるための方法や将来性、今後求められる視点を中心に紹介します。
-
AIの来客予測への活用方法とは?実例とともに解説!
来客予測を正確に行うことは、店舗運営において非常に大事な要素です。しかし、これまでのように人の力で行う来客予測では複雑かつ膨大なデータを正しく処理することが難しく、時間と手間がかかる割に成果につながりにくいという課題がありました。 AIによる来客予測を行うことでそのような課題を解決できるとともに、顧客ニーズの多様化やグローバル化、コロナ禍の影響などにも迅速に対応することが可能になります。 本記事では、このようなAIを活用した来客予測のメリットや方法、具体的な事例などを紹介します。
-
AIを活用して簡単に「時系列予測」ができる!メリット、やり方を紹介
企業活動を円滑に行うには「今後の予測をいかに正確に立てることができるか」にかかっているといっても過言ではありません。特に食品・飲料など売上に季節要素が高い業界の活用は必須と言えるでしょう。 そのために、季節・トレンドなどの時間的変化を考慮しながら「時系列予測」を立てる必要があります。 この記事では「時系列予測」を行うメリット、やり方、AIを使った便利なデータ分析方法について紹介します。
-
売上予測にAIを活用するメリット7点!やり方・導入事例を紹介
「AI」を使って売上予測ができることをご存じですか?在庫を抱える小売業にとって、売上予測を正確に行うことは大きな課題です。なぜなら多くの在庫を抱えることは経営にとって大きなリスクとなるからです。大量に仕入れた在庫の多くが売れ残ってしまった場合、企業は大きな損害を被ります。その誤差をできるだけ少なくする技術として、注目を集めているのがAIによる売上予測です。この記事では、売上予測にAIを活用した場合のメリット、やり方、導入事例などについて紹介します。
-
AI・機械学習に必須のデータの前処理とは?正規化・標準を使った前処理方法を解説
業務効率化や売上拡大のため、ビジネスでのAI開発・活用が進んでいます。 ですが、AI活用に「データ前処理」が重要であることはあまり知られていません。 データ前処理は、AI開発までの作業工程の8割を占めるとも言われるほど重要な工程です。 本記事では、AIにおけるデータ前処理とは何なのか、具体的なデータの前処理方法を解説していきます。
-
売上最大化のための在庫予測
近年、小売業や通販業界で問題になっている在庫管理の課題を、AIを活用した在庫予測の手法を用いて、解決に導きます。 AIを活用した在庫予測は、従来の需要予測より精度が高く、信頼性の高い予測を実現でき、適切な在庫予測による売上最大化が見込めるようになるメリットがあります。