-
予測分析ツールおすすめ7選比較!AIで予測できること・無料ツールはある?
将来の売上や株価を予測することができれば、ビジネスや投資において非常に有利に動けます。しかし、人の勘や経験に頼った予測には限界があり、正確な予測をすることは困難です。 そこで、あらゆる業界で「予測分析ツール」が注目されています。予測分析ツールを使えば、膨大なデータを分析し、過去の傾向をもとに未来を予測できます。さらに、機械学習や人工知能を使った予測分析ツールを活用すれば、誤差を減らしてより高い精度で予測を行うことができます。 本記事では、予測分析ツールでどんなことが予測できるのか、おすすめの予測分析ツールをご紹介します。AIやツールを使った予測に興味がある方は、ぜひ参考にしてみてください。
-
AI開発外注の費用相場・期間は?おすすめ開発会社を解説
AIを開発したいと思った時にまずぶつかる壁は、「自社内で開発するか外注するか」です。 社内に開発人材がいる場合もいない場合も、AI開発の外注は選択肢の1つとして考えられます。 AI開発の外注にはメリット・デメリットがあるため、AI開発において重視する内容によって外注が最適かどうか変わってきます。 本記事では、AI開発を外注しようか検討している方に向けて、AI開発の外注にかかるコストやメリット・デメリットを解説します。さらに、AI開発に強いおすすめの外注先もご紹介するので、開発会社選びの参考にしてみてください。
-
ノーコードでAIを開発する方法とは?開発事例・無料の開発プラットフォームを紹介
ここ数年、国内外の開発者の間で「ノーコード(NoCode)」という言葉がよく聞かれます。 ノーコードとは、文字通りコードいらずでWebサイトやWebサービスを開発する手法のことです。 このノーコードの開発手法を使って、AI(人工知能)を開発しようとする動きが出てきています。 本記事では、ノーコードでAIを開発して自社課題を解決したい方に向けて、ノーコードでどんなことができるのかを解説していきます。 ノーコードを使ってAIを開発した事例も紹介しているので、ぜひ参考にしてみてください。
-
機械学習(ML)とは? メリット・種類・業界や課題別の活用例・実施方法を解説
機械学習(Machine Learning)とは、コンピューター(Machine)が与えられた大量のデータを処理・分析することでルールやパターンを発見する技術・手法のことです。学習の結果明らかになったルール・パターンを現状に当てはめることで、精度の高い将来予測が可能となります。 高度なコンピューターを使用することで、人間の脳では処理しきれない複雑な要素を加味した分析・学習が可能となりました。その結果、近年ではさまざまな領域において人間による作業の精度向上・効率化に役立てられています。自動運転や医療、人間の購買行動の分析など、さまざまなビジネス領域で機械学習が実用化されており、今後のマーケットで生き残っていくためには必須の技術になりつつあるといえるでしょう。 本記事では、機械学習(ML)の概要やメリット、種類に加え、業種別・課題別の活用例を紹介します。実際に取り入れる際の作業フローも紹介しているので、機械学習の活用に興味がある方はぜひ参考にしてみてください。
-
予測分析とは?活用事例とその手法・ツールをご紹介
予測分析とは、過去の行動パターンを特定し、将来の結果を予測するために、大量のデータに数理モデルを適用する手法です。 機械学習、データマイニング、統計アルゴリズムなどの複数の組み合わせがもたらす「予測的手法」により、予測分析ツールは、単純な相関付け以上の機能を実装できます。ビジネス分野では、予測分析が以下に示すようなさまざまな用途に利活用されています。 ・需要と供給のより正確な予測コンピューターネットワークに悪影響を及ぼす脅威と潜在的問題の特定 ・保険サービスや金融サービスにおけるセキュリティリスクの低減 ・クレジットカード詐欺のリアルタイム検出 予測分析機能を組み込んだソフトウェアが増えつつあり、これはあらゆる規模の組織体でユーザーにとって身近なものになっています。予測分析はデータサイエンスや高度な分析に関する訓練を受けていないエンドユーザーにも実務上の価値をもたらします。これは、まさにすべてのユーザーが恩恵を受ける機会を提供することに値します。この概念を「データの民主化」と呼びます。誰もがデータを利用してより良い意思決定を下せるように、組織全体でデータを誰もが利用できるようにするという概念です。 本記事では、予測分析がなぜ重要なのか、予測分析の実活用例、予測分析の手法、機械学習やデータマイニングなどの他のテクノロジーとの関係、モデルの役割、予測分析を始めるにあたってのヒントについてご紹介します。
-
需要予測とは?課題・種類・方法やEXCELでの例と、AIを活用したポイントを解説
需要予測とは、過去の販売データなどを参照し、自社の商品やサービスがどのくらい売れるのかを予測することを指します。 正確な需要予測を行うことは、企業活動においてとても重要です。 なぜなら、この需要予測に応じて、商品の増産や、サービス提供のために人材を確保を行うためです。的確に需要予測を行うことによって、コストを抑えることにも繋がります。 精度の高い需要予測は企業の成長にとって必要不可欠だと言えるでしょう。 しかし、精度の高い需要予測は難易度が高く、属人化する恐れのある業務です。そのため、近年では需要予測にAIを活用する取り組みが注目されています。 この記事では、需要予測の課題や、AIを活用した需要予測のメリットなどを紹介します。
-
AIのマーケティングへの活用事例と、適用方法をご紹介
AI(人工知能)はさまざまな分野で活用されていますが、マーケティングもその例外ではありません。マーケティングは販売から流通に関わるまでテーマが幅広いため、そのぶんAIが活躍する領域も多様です。 たとえば広告という領域だけでも、宣伝用のコピーを自動で作成するAI、掲載用のコンテンツ(クリエイティブ)を自動で最適化するAI、広告代理店において媒体社から広告枠を購入するメディアバイイングを自動化するAIなどが挙げられます。また、インターネット検索からの集客を目指すSEO対策をサポートするAIも登場しました。 本記事では、日本国内や海外の事例をもとに、マーケティングの分野でAIがどのように活用されているのか、その成功事例とポイントを紹介します。 AIが台頭したことにより、これまで人手で行なっていたさまざまな業務が機械に代替されると懸念する声があります。しかし、マーケティングにおいては日常的なルーティン業務をAIが代替してくれることにより、本来のクリエイティブな仕事に集中できるというメリットが大きいでしょう。 現代のマーケターは、ツールを用いたさまざまな広告キャンペーンの分析や企画、関連部署との調整などに忙殺されがちです。結果として、他社と差別化するためのアイデア出しなどに割く時間がなかなか取れず、成果につながらないという企業・部署は多いのではないでしょうか。 AIの導入によって日々のマーケティング業務を一部自動化できれば、これまで単調な作業に使っていた時間をクリエイティブな業務に割けるはずです。AIをうまく活用することが、現代のマーケターが成果を残すためのヒントになるかもしれません。
-
機械学習の予測モデルとは?予測モデルの種類・作り方・事例紹介
ここ数年で急激に浸透したAI。私たちが知っているサービス以外にも、ビジネスの様々な分野で活用が進んでいます。 AIをビジネスに活用するメリットの1つとして、「予測」が挙げられます。需要や売上の予測など、AIを使うことであらゆる予測が可能です。 本記事では、AIの機械学習でどのような予測ができるのか、予測の導入事例をご紹介します。
-
食品業界のAI活用方法を、事例8点を交えてご紹介
近年、AIの進化はさまざまな業界に変革をもたらしています。食品業界においても、より豊かな食生活を実現するためにAIの活用を目指す動きが増えてきました。また、世界的にみても食料廃棄率の高さは大きな問題となっており、食品企業が果たす社会的な役割についても注目度が高まっています。 今回は、食品業界におけるAIの活用方法について、8つの事例を挙げながら解説します。食品業界が抱える課題を解決するヒントとなりうる領域なので、是非参考にしてください。
-
「品質改善」AI活用 事例7選、製造業・工場のAIカイゼンをご紹介
近年では、製造業に限らず様々な分野でAI技術が活用されるようになりました。 しかしながら、AIの導入はAI開発者の現場知識(ドメイン知識)が不足していることにより、実運用には至ってないプロジェクトが数多くあると言われています。 また、製造プロセスは複雑化している傾向にあり、人手不足やコスト不足で悩む企業が数多く見受けられます。 数年前に取られていたアプローチは既に通用しなくなっている場面も増えていると言っても過言ではないでしょう。 このような問題に対しては、AI技術を活用した製造品質改善が注目されています。 本記事では、実際の企業での導入事例を交えて、品質改善に取り組む施策について詳しく解説していきます。
-
AI作成に必要なデータは量より質?データの量・質とAI構築例を解説
「機械学習のモデルを作るためにどれだけのデータが必要ですか」という質問についてよく聞かれます。 AI(人工知能)、機械学習や深層学習を構築する場合に、必ず学習データが必要になってきますが、一般的には「ビッグデータ」と呼ばれる量のデータは、どれくらいのデータ数が求められるのでしょうか? 実は学習においてはデータの量だけでなく、質も重要です。 どの程度の質で、どのくらいのデータを集めればいいのか?という疑問を持っている方も多いため、今回はそんな学習データについてまとめてみました。
-
【業界別】AI・人工知能の活用事例20選!ビジネスにおけるAIの今後は?
近年、AI(人工知能)は様々な分野で活用が進んでいます。 AIを組み込んだ便利な仕組みやサービスが次々に登場し、あらゆる業界で活用され始めています。 この記事では、AIがどのように我々の生活や仕事を便利にするのか、業界・産業別にAI活用事例を解説していきます。
-
自動車部品 業界におけるAI活用事例7選をご紹介
品質向上や業務効率化の面において、とくに活躍している自動車部品業界のAI。本記事はこの自動車部品業界のAI活用事例を7つ紹介します。中には検査不備がゼロになったり、生産効率が4倍以上になったりといった大きな効果を享受している企業もあります。 また、それぞれの企業が全く異なるシステムを導入しているため非常に興味深いです。
-
飲食業界でのAI活用事例!人手不足解消・売上を予測する方法とは?
我々の生活と切っても切れないのが飲食業。 衣食住の1つである食を提供する、なくてはならないサービスの1つです。 市場規模は約33兆円ともいわれており、市場規模も大きい業界です。 一方で、参入障壁が低いため競合が乱立しやすく、価格競争が激しいのも飲食業界。 また、天気や曜日の影響を受けやすく、来客数や売上が安定しづらいといった特性もあります。 こうした飲食業界における課題を解決する方法として、AIの活用が注目されています。 AIを活用することで人手不足を解消したり、顧客の満足度を向上させることも可能です。 本記事では、実際に飲食業界で活用されている事例を元に、AIの活用方法をご紹介します。 業務効率化や売上向上など、飲食業で課題を抱えている方はぜひ参考にしてみてください。
-
AIを活用した在庫管理の改善事例、11選をご紹介
在庫管理を目視で行うことは、ミスの誘発や人件費の増大に繋がります。効率よく在庫管理を行うためにAIを導入し、成功につなげた各社の事例を紹介します。今後のAI導入の参考にしてください。
-
AIの小売業界への適用方法、事例をご紹介
小売業界においては、属人化した仕事が多く、その効率化が課題になっています。「業務の進め方が、その人にしかわからない状態」では、効率化しようにもできません。自分なりの商談スタイルを確立しているバイヤーなどが、その例として当てはまるでしょう。 こうした事態を脱するために、近年ではAIの活用が注目を集めています。 この記事では、小売業界にAIをどのように適用するかという方法、またAIの活用事例などについて紹介します。
-
需給計画、需給調整とは?AIを活用し製造・物流を効率化するシステムをご紹介
近年、小売業や通販業界で取り組むべき課題になっている最適なキャンペーン計画の策定について、AIを活用した需要予測の手法を用いて、解決に導きます。 AIを活用した需要予測は、従来の予測手法より精度が高く、信頼性の高い予測を実現できるため、最適なキャンペーン計画の策定ができるようになり、売上最大化が見込めるようになるというメリットがあります。
-
AI予測モデルの簡単な作り方・評価方法を紹介
近年はAI技術の発展・企業でのDX化推進とともに、導入のハードルも下がり始めています。実際にさまざまな業種の企業が積極的にAIを活用し始めています。 AIはさまざまな分析や予測を得意としていますが、やみくもにAIを導入しても必ずしも高い精度で実現できるわけではありません。それはなぜでしょうか。実は「AIモデル(機械学習モデル)」の品質が、AIの精度そのものを左右するためです。 言い換えれば、より精度の高いAIを開発・導入する上では「AIモデル」が非常に重要な鍵を握っていると言えるでしょう。 今回は、AIモデルの簡単な作り方・評価方法などを詳しく紹介します。 ぜひ皆様のビジネスの参考にしてみてください。
-
AI予測とは - メリット・重要である理由・仕組みを紹介
近年、企業活動にAI予測などの技術を導入する動きが加速しています。少子高齢化による働き手の不足に対して、有効なアプローチであることからも注目を浴びているという背景があります。 IT技術の進歩によりAIが簡単に活用できるようになったこと、また人々のライフスタイルの多様化によるマーケティングのニーズなどから、企業のAI導入は進んでいます。また驚くべきことに、導入企業の約8割がその効果を実感しています。(※総務省「令和3年版 情報通信白書」より) AIは過去のデータを学習することで、精度の高い予測をすることが可能です。需要の変化を的確にキャッチすることができるため、経営判断にも活用されています。 今まで担当者・経営者の経験・勘などに頼っていた箇所を、AIに置き換えることができるようになります。 しかし、そのAIの特性(苦手なこと・得意なこと)を正しく理解しなければ、有効な活用は難しいと言えるでしょう。 この記事では、AI予測を効果的に活用するために押さえておくべきポイント、そのメリットなどを中心に紹介します。
-
機械学習のビジネスにおける活用事例を徹底解説
様々な分野・企業で、AIや機械学習の活用が進んでいます。 iPhoneのSiriやGoogleのアレクサなど、日常生活にも溶け込んでいるほどです。 AIにデータを機械学習させれば、膨大な時間がかかる作業も分析も一瞬で終えることができます。 AIは学習させるデータでどんな使い方もできるため、その可能性は無限大です。 本記事では、AIや機械学習をビジネスに活用する方法や、導入事例をご紹介します。
-
効率化できる在庫管理の考え方と、AIを活用した最先端の在庫管理
製造業や小売業など、商品を扱う企業において重要なのが「在庫管理」です。適切な在庫管理ができていないと商品の需要変化に対応できず、売上機会の損失にもつながりかねません。そうはいっても、今さら管理方法を変えるのは遅すぎるかも...と思われる方もいるでしょう。在庫の管理方法を改善するのに遅すぎることはありません。今現在うまく在庫管理ができていない場合も、コツや事例を学べばいつからでも改善可能です。本記事では、在庫管理を効率化するための考え方について解説していきます。
-
需要予測は当たらない?AIで高い精度を実現する方法
企業が抱える在庫削減は、ビジネスにおける非常に重要な課題のひとつです。少ない在庫でも欠品を起こさないようにするためには、どのようにすればよいでしょうか? 答えは一言でいうと、将来の需要を正確に予測して、必要なときに必要なだけ生産すればよいのです。 しかし、新型コロナウイルスによる需要の激減を数年前から予測できた人はどれだけいたのでしょうか? また、来月発売される新製品の需要を完璧に予測することは可能でしょうか? 残念ながら「需要予測とは当たらないもの」と言っても過言ではありません。 今日、多くの企業がビジネスの現場で需要予測に取り組んでいます。 データを集計、加工、分析しレポートとして出力するシステムを導入したり、独自の予測モデルを作ったり、あるいは在庫担当者の長年の経験に頼ったり、方法はさまざまですがほとんどの企業が需要予測をさまざまな形で取り入れていると言ってよいでしょう。 長年多くの企業で取り組まれてきたにもかかわらず近年ますます需要予測の重要視されているのはなぜでしょうか? 本記事では、需要予測の基礎についておさらいし、需要予測を高い精度で実現する方法についてご紹介します。
-
AIを活用した需要予測による在庫最適化
ここ数年で、AIを活用して商品の需要を予測する動きが増えてきています。 AIを需要予測に使う目的は様々ですが、最も多いのは在庫の最適化です。 どの商品がどのくらい売れるのかをAIが予測できれば、最適な在庫数を保つことができます。 本記事では、AIを使った需要予測によってどう在庫が最適化されるのか、事例を交えて解説していきます。
-
生産管理と品質管理の違いとは?AIを活用した最先端の事例もご紹介
生産管理とはモノづくりの現場で行われる受注から納品までを含む業務のことです。一言で生産管理といっても、生産計画、受注管理、発注管理、在庫管理、製造管理、外注管理、進捗管理、品質管理までの工程が含まれます。 生産管理は三つの要素である「品質」「原価」「納期」が重要です。なぜなら、高い品質の商品を、できるだけ原価を安くし、短期間で作ることが企業の利益に深く結びついているからです。 この記事では生産管理と、その一工程である品質管理の関係性を整理しながら、AIを活用した事例についても紹介します。
-
在庫管理を基礎から解説 - 手順・コツ・AIを活用した手法まで紹介
製造業や小売業において、在庫管理の成否は業績を大きく左右するポイントです。大型受注を取っても十分な在庫がなければ機会損失になり、逆に過剰な在庫があれば保管費や処分費用によって利益を圧迫するでしょう。 本記事では、企業にとって重要な在庫管理の基礎を解説します。手順やコツに加え、AIを活用した管理手法まで紹介するので、在庫管理に携わる企業担当者はぜひ参考にしてください。
-
AIによる需要予測の仕組みとは?導入事例・費用・アルゴリズムを解説
過去の販売データを元に商品の発注数や売れ行きを予測するのは、小売業界では当たり前に行われています。 ですが、経験や勘に頼った予測は個人の力量に依存するため、予測に再現性がありません。予測の精度も人によってバラバラなため、常に高い精度で予測することは難しいです。 こうした課題を解決する方法の1つとして、AIを使った需要予測が注目されています。AIを使うことで、スキルに依存しない高精度で需要予測が期待されているのです。 本記事では、AIを使った需要予測の仕組みや導入事例について解説していきます。需要予測をして在庫管理の最適化や売上増加を狙っている方は、ぜひ参考にしてみてください。
-
無料で在庫管理を行う方法!在庫管理ツールと使い方をご紹介
在庫管理を正確に行うことは経営を行ううえで非常に重要です。在庫管理が正しく機能していないと、企業経営に大きなダメージを与えることになります。 しかし在庫管理を手作業で行う場合、その成果を担当者の経験やスキルに依存してしまうことが多く、属人化しがちな業務です。作業工数もかかってしまうため、ツールを用いてもっと簡単に在庫管理をしたいという人も多いのではないでしょうか。 とは言えいきなり有料のシステムを導入するのもハードルが高いため、まずは無料で使えるツールを導入したいですよね。この記事では、無料で在庫管理ができるツールとその使い方、それぞれのメリット・デメリットについて紹介します。
-
工場の生産管理におけるAIの活用法とは?
時間とコストを削減したり、不良品の発生を防いだりする際に役立つのが生産管理システム。最近ではこのシステムを利用して工場の生産管理をAI化する企業が増えています。そこで本記事では、生産管理における AI の活用方法と題して、生産管理システムの機能やメリットを紹介します。
-
製造業の在庫管理におけるAI活用とは?事例5選とともにご紹介
AppleのSiriやGoogleのAlexaなど、AIはここ数年で一気に身近な存在になりました。 AIとは、データを学習することで人間の活動を再現できるシステムのことです。 お掃除ロボットや翻訳機能といった身近なところから、医療現場や農業など様々な領域で活用されています。 日々の生活だけでなく、企業の課題解決にも利用され始めているAI。最近では特に、製造業での活用が注目されています。 人手不足の解消や製品の品質担保、需要変動に即した在庫管理など、製造業の現場では日々様々な問題が発生しています。 もしこれらの問題がAIで効果的に解決できるとしたらどうでしょうか。 本記事では、AIを使って在庫管理に成功した事例や、製造工数を削減した事例をご紹介します。 テクノロジーを使って製造業の課題を解決したい場合は、ぜひ参考にしてみてください。
-
AIを活用した製造管理とは? 製造業のDX推進の方法と事例紹介
製造業において、製造管理にはどのような役割があり、なぜ重要なのでしょうか?生産管理と同義に捉えられることが多いですが、管理の目的や範囲にはそれぞれ違いがあります。製造管理の役割や意義を的確に把握したうえで、業務にあたることが大切です。 今回は、生産管理とも比較しながら製造管理の役割を明らかにしたうえで、その必要性やメリットを解説します。さらに、現代の製造業において需要が高まっているAI活用についても、製造管理の現場にもたらす効果や導入事例を紹介するので、ぜひ参考にしてみてください。
-
アパレルの生産管理におけるAIの活用方法 - 需要予測・検査・検品
アパレル業界における生産管理には効率化が求められます。生産量や販売時期の予測から始まり、納品までの一連の流れには多くの工程が存在するため、管理が大変です。 そこで、現状の課題から、アパレル業界における生産管理の基礎知識を合わせて解説します。どうすればアパレル向けの生産管理システムを効率化できるのかも紹介します。
-
小売業界におけるAI需要予測の実例や、進め方、ツールをご紹介
小売業界で、AIの活用が進んでいることはご存知でしょうか。 これまで人の管理に依存していた、在庫や発注管理をAIが代わりに担うようになってきています。 AIを活用することで、担当者の主観に頼らずデータを分析でき、より確度の高い予測ができるといったメリットがあります。 AIを使った商品の需要予測にはどのようなメリットがあるのか、具体的な事例を踏まえてご紹介していきます。
-
AI・機械学習による需要予測のメリットは?高い予測精度を実現する方法を解説
昨今、多くの企業で『需要予測』が注目されています。目まぐるしく変わる社会の変化に合わせて、無駄なく製品の提供するには需要予測が欠かせません。 需要予測の目的は、「消費者が製品を必要とするタイミングや量を予測し、適切に供給する」ことにあります。 精度の高い需要予測を実現することで、人・物・コストの流れを最適化することができ、企業によっては数億円のインパクトになることもあるでしょう。 これまで、需要予測はベテラン従業員のKDD(*1)に頼る傾向がありました。近年では「AI」「機械学習」などを活用した新しい手法も身近になりました。 本記事で『需要予測』について、そのメリットや最新のAI・機械学習を活用方法について解説していきます。 (*1) KKDとは日本語の「経験」(KEIKEN)、「勘」(KAN)、「度胸」(DOKYOU)の頭文字を取ってできた言葉で、製造業を中心に職人の技として尊重されてきた手法です。
-
AIによる需要予測に必要なデータの種類とは?集め方についても紹介
人々がスマホを片手に生活するようになり、SNSへの投稿が活発になるなどして、企業は様々なデータを取得できるようになりました。 そうしたデータを需要予測をはじめとしたビジネスシーンに活用しようという動きが強まっています。 需要予測とは、市場において「会社の商品やサービスがどれくらい売れるか」「在庫がどれくらい必要になるのか」などを、予測することです。 この記事では、その需要予測を行うにあたり、どのようなデータが必要となるのかについて説明します。 また膨大な量となるビッグデータを扱うに当たって、欠かせないAIについての活用についても触れていきます。
-
生産計画をエクセルで行う場合の、メリットやデメリットを解説
生産計画を策定する際には、原材料調達から出荷までを円滑に行うため、全体を見渡した設計が必要になります。生産計画に落ち度があれば、原価アップや品質の悪化、納期遅れなどにつながるため、会社の業績を左右する重要な役割です。 中小規模の製造業であれば、エクセルで生産計画を作成しているケースは多いでしょう。エクセルは生産計画以外でも業務に使用する頻度が高く、多くのビジネスパーソンにとって使い慣れたツールです。 エクセルの機能を使いこなせれば、生産計画を作成・管理する効率も格段に向上させることが可能です。しかし、エクセルで生産管理を行うことにデメリットはないのでしょうか。 本記事では、生産計画をエクセルで作成・管理することのメリット・デメリットを徹底解説します。また、エクセル以外の専用ツールを導入する価値についても紹介するので、ぜひ参考にしてみてください。
-
生産管理の将来性は? DX・AIを活用できるかが肝
製造業における生産管理といえば、自社製品の製造・原価・品質に大きな影響を及ぼす重要な職務です。 近年では、システムやAIの導入により生産性を大きく向上させる企業が増えています。 生産管理におけるDX(デジタルトランスフォーメーション)の推進は、人員の確保や次世代への技術継承に悩む企業の解決策となりつつあります。 本記事では、AIが生産管理という仕事にもたらしている変化や、生産管理職の将来像についてご紹介します。
-
AIの生産管理への活用方法とは?実例とともに解説!
近年は少子高齢化による就労人口の低下により、多くの産業において、付加価値や生産性の向上、業務効率化といった課題が明確になってきております。特に製造業界では、労働力不足が深刻化しています。 過去にはこれらの課題を解決するための有効な手法としてIT化が推進されてきました。最近では、さらにAI・人工知能を導入する企業も散見されています。特に、製造業をはじめとした生産管理において、AIを活用する企業は年々増加しています。生産管理の分野において、AIを活用し生産性向上を目指しています。 本記事では、生産管理の場面で、具体的にどのようにAIを活用していくのか、そのメリット・方法・事例も含めてご紹介をさせていただきます。
-
Excelを使った在庫管理のやり方、表の作り方、使える関数をご紹介!
企業の活動において、消費者であるユーザーが欲しがる商品を、欲しいタイミングで、欲しい分だけ適切に提供できることが、企業が目指すひとつの理想の形ではないでしょうか。 実際、「適正な在庫水準とは何か?」という問いにパーフェクトに答えるのは難しいとはいえ、ある程度の健全な在庫水準を保ち、欠品を防止に務めるのは、およそ商品を扱う企業にとっては共通の使命ともいえるのでしょう。 適性な在庫水準を保つために必要となるのが在庫管理表です。 実際に、紙での在庫管理をしていることも少なくないと思いますが、扱う商品などのアイテム数が多い場合、紙の在庫管理表では管理しきれなくなる可能性も出てきます。そこで便利でかつ的確な在庫管理を可能にするのが、Excelです。 本記事では、Excelを活用した在庫管理の方法について、在庫管理のやり方、表の作り方、使える関数をまとめてご紹介します!
-
AIを活用して簡単に「時系列予測」ができる!メリット、やり方を紹介
企業活動を円滑に行うには「今後の予測をいかに正確に立てることができるか」にかかっているといっても過言ではありません。特に食品・飲料など売上に季節要素が高い業界の活用は必須と言えるでしょう。 そのために、季節・トレンドなどの時間的変化を考慮しながら「時系列予測」を立てる必要があります。 この記事では「時系列予測」を行うメリット、やり方、AIを使った便利なデータ分析方法について紹介します。
-
AIを使った在庫管理の事例6選!AIカメラを使った在庫管理とは?
在庫管理を行う場合、次のような課題を抱えている企業は多いのではないでしょうか。 ・担当者の知識や経験によって管理品質にバラツキがある ・データ入力や作業の人力ミスが起こりやすい ・正確な需要予測ができずに在庫の欠品、過剰在庫が発生する こうした課題も、AIを活用した在庫管理を導入することで解決できます。 この記事ではAIを活用した在庫管理のメリットや、導入方法、実際に導入している業界の活用事例を解説していきます。 ■この記事でわかること ・AIを使った在庫管理の事例 ・AIの在庫管理で売上を最大化する方法 ・カメラ・画像認識を使って在庫管理する方法
-
売上予測にAIを活用するメリット7点!やり方・導入事例を紹介
「AI」を使って売上予測ができることをご存じですか?在庫を抱える小売業にとって、売上予測を正確に行うことは大きな課題です。なぜなら多くの在庫を抱えることは経営にとって大きなリスクとなるからです。大量に仕入れた在庫の多くが売れ残ってしまった場合、企業は大きな損害を被ります。その誤差をできるだけ少なくする技術として、注目を集めているのがAIによる売上予測です。この記事では、売上予測にAIを活用した場合のメリット、やり方、導入事例などについて紹介します。
-
AI・機械学習に必須のデータの前処理とは?正規化・標準を使った前処理方法を解説
業務効率化や売上拡大のため、ビジネスでのAI開発・活用が進んでいます。 ですが、AI活用に「データ前処理」が重要であることはあまり知られていません。 データ前処理は、AI開発までの作業工程の8割を占めるとも言われるほど重要な工程です。 本記事では、AIにおけるデータ前処理とは何なのか、具体的なデータの前処理方法を解説していきます。
-
製造業でのAIによる需要予測の活用事例
製造業ではビックデータを使ったAIによる需要予測を行うことにより作業の自動化が進み、人手不足問題の解消や生産ロスの解消にも貢献します。
-
担当者の経験に頼った需要予測を時系列予測で改善
商品やサービスの需要をAIによる時系列分析でより正確に予測していきます。 高精度な需要予測ができれば、データに基づいた仕入れや生産の計画ができます。