-
予測分析ツールおすすめ7選比較!AIで予測できること・無料ツールはある?
将来の売上や株価を予測することができれば、ビジネスや投資において非常に有利に動けます。しかし、人の勘や経験に頼った予測には限界があり、正確な予測をすることは困難です。 そこで、あらゆる業界で「予測分析ツール」が注目されています。予測分析ツールを使えば、膨大なデータを分析し、過去の傾向をもとに未来を予測できます。さらに、機械学習や人工知能を使った予測分析ツールを活用すれば、誤差を減らしてより高い精度で予測を行うことができます。 本記事では、予測分析ツールでどんなことが予測できるのか、おすすめの予測分析ツールをご紹介します。AIやツールを使った予測に興味がある方は、ぜひ参考にしてみてください。
-
ノーコードでAIを開発する方法とは?開発事例・無料の開発プラットフォームを紹介
ここ数年、国内外の開発者の間で「ノーコード(NoCode)」という言葉がよく聞かれます。 ノーコードとは、文字通りコードいらずでWebサイトやWebサービスを開発する手法のことです。 このノーコードの開発手法を使って、AI(人工知能)を開発しようとする動きが出てきています。 本記事では、ノーコードでAIを開発して自社課題を解決したい方に向けて、ノーコードでどんなことができるのかを解説していきます。 ノーコードを使ってAIを開発した事例も紹介しているので、ぜひ参考にしてみてください。
-
機械学習(ML)とは? メリット・種類・業界や課題別の活用例・実施方法を解説
機械学習(Machine Learning)とは、コンピューター(Machine)が与えられた大量のデータを処理・分析することでルールやパターンを発見する技術・手法のことです。学習の結果明らかになったルール・パターンを現状に当てはめることで、精度の高い将来予測が可能となります。 高度なコンピューターを使用することで、人間の脳では処理しきれない複雑な要素を加味した分析・学習が可能となりました。その結果、近年ではさまざまな領域において人間による作業の精度向上・効率化に役立てられています。自動運転や医療、人間の購買行動の分析など、さまざまなビジネス領域で機械学習が実用化されており、今後のマーケットで生き残っていくためには必須の技術になりつつあるといえるでしょう。 本記事では、機械学習(ML)の概要やメリット、種類に加え、業種別・課題別の活用例を紹介します。実際に取り入れる際の作業フローも紹介しているので、機械学習の活用に興味がある方はぜひ参考にしてみてください。
-
ディープラーニング(深層学習)とは?概要や、業界・課題別の活用例・導入手法を解説
AI(人工知能)という言葉は昔からありましたが、近年いよいよ本格的に生活のなかで活用されるようになってきました。そのなかで重要な役割を果たしているのがディープラーニング(深層学習)です。従来は機械に任せるのが難しかったケースにも対応できるようになり、さまざまな形で日常生活やビジネスに変革をもたらしています。 しかし、ディープラーニングがどのような仕組みなのか、具体的に理解している方は少ないでしょう。本記事では、ディープラーニング(深層学習)の仕組みや、AI・機械学習との違い、さらに業種別のビジネスへの活用例を紹介します。 ディープラーニングを事業活動に活かしたいとお考えの経営者・事業担当者の方は、ぜひ参考にしてみてください。
-
製造業におけるAI活用事例23選!各社の導入方法・例をご紹介
ここ数年でAi技術は格段に進化を遂げています。様々な領域でAIの活用が進んでいますが、製造業ではどのくらいAIの導入が進んでいるのでしょうか。製造現場での実用化にはいまだ課題も残っています。AIを活用できる人材がいない、AIの導入方法がわからず、活用が進んでいない企業も多いのではないでしょうか。 この記事では、実際にその仕組みや導入のメリット、成功・失敗事例を紹介していきます。製造業でAIを導入するうえでの注意点についても解説していますので、ぜひ参考にしてください。
-
異常検知とは?概要と業界別の実例、その実現方法をご紹介
近年、機械学習を用いた異常検知システムの開発がさかんになってきています。 日本の製造業は、従来より世界的に見てもとりわけ優秀ですが、現在は少子高齢化による後継者不足などの課題に直面しているのが現状です。 このような国家の危機的状況ともいえる大きな課題を解消するために、機械学習による異常検知システムが脚光を浴びています。 異常とは、通常と異なる振る舞いをすることで、日常生活においても、安定していた株価が急変したり、動きを保っていた機械が急におかしな動きをしだしたり、アカウントごとの投稿が一定量だったSNSの投稿量が激増した(炎上)など、「いつもと違う」ことに気が付く急激な変化は、私たちの身の回りでもよく起こっています。 今回の記事では、製造業や金融業などで活用されている、機械学習における異常検知の手法やアルゴリズムなどをご紹介します。機械学習を用いた異常検知による自動化を検討している方は、ぜひご活用ください。
-
AI外観検査のメリット・実例・実施手順について解説
工場などの製造業において、部品・製品の不良を発見する作業は欠かせない工程です。 傷や欠陥などのある品質の低い部品・製品が混じったまま出荷されてしまうと、大きなトラブルが起こるだけでなく、顧客の信頼を損なうことにも繋がります。 しかし、外観検査は重要な工程にも関わらず、属人的な作業であると言えます。 近年、それを改め「AIによる外観検査を導入しよう」という取り組みが増加しています。 AI技術の飛躍的な進歩、また人の目に代わる映像技術の発展が、AIによる外観検査を可能にしました。 この記事ではAIを外観検査に活用する方法をはじめ、AIを用いた外観検査の活用事例などについて紹介します。
-
機械学習の予測モデルとは?予測モデルの種類・作り方・事例紹介
ここ数年で急激に浸透したAI。私たちが知っているサービス以外にも、ビジネスの様々な分野で活用が進んでいます。 AIをビジネスに活用するメリットの1つとして、「予測」が挙げられます。需要や売上の予測など、AIを使うことであらゆる予測が可能です。 本記事では、AIの機械学習でどのような予測ができるのか、予測の導入事例をご紹介します。
-
AI制御とは?AIで制御できるもの・活用事例を解説
手作業での設備点検に毎月時間をとられている。 確認漏れで設備の異常の発見が遅れてしまった。 製品の品質や生産性を向上したい。 こうした課題が、AIで解決できるとしたらどうでしょうか。 日常生活ではまだまだ馴染みのないAIですが、実はビジネスでは年々活用領域が広がっています。 AIでシステムを制御すれば人的ミスが抑えられる上、コスト削減や売上拡大につながる可能性があります。 本記事では、あらゆる業態・サービスでAIによるシステム制御を活用している事例をご紹介します。 AIでどのようなシステム制御ができるのか、どのような効果があったのかもまとめました。 AIで自社の課題を解決できないか検討している方は、ぜひ参考にしてみてください。
-
AIを活用した故障予測とは?AI導入の流れや活用事例を紹介
IoT(Internet of Things)やAI(人工知能)は近年大きな進化を遂げており、工場における機械や製品の異常検知、故障予測などにも活用されるようになりました。製造工程が複雑化するなか、人間の目視による確認には限界があるため、AIのさらなる活躍が期待されている分野です。 しかし、IoTやAIを活用して故障予知をするためには、そのメカニズムを理解したうえで適切に活用する必要があります。本記事では、AIを用いた故障予測の具体的な方法や、実際に故障予知を導入した8つの事例を紹介します。 AIを活用した故障予知により、安定生産・稼働率向上を実現したいという方はぜひ参考にしてみてください。
-
自動車部品 業界におけるAI活用事例7選をご紹介
品質向上や業務効率化の面において、とくに活躍している自動車部品業界のAI。本記事はこの自動車部品業界のAI活用事例を7つ紹介します。中には検査不備がゼロになったり、生産効率が4倍以上になったりといった大きな効果を享受している企業もあります。 また、それぞれの企業が全く異なるシステムを導入しているため非常に興味深いです。
-
AI技術の不正検知への適用方法、メリット・活用事例をご紹介
金融取引のデジタル化にともない、クレジットカード決済の不正取引をはじめ、企業の不正会計など、その手口は複雑化・巧妙化しています。 今やインターネット上での金銭のやりとりはビジネスに欠かせないものとなっており、その分不正利用や不正取引が行われるリスクは増加していると言えるでしょう。 不正を取り締まるためにモニタリング部門に人員を割く必要がありますが、それでは取引が増加するたびに人材を増員する必要がありますし、やみくもに人を増やしたところで不正検知の精度にも不安が残ります。 そこで近年、人の目によるチェックではなく、AIを活用してその不正を検知しよう、という動きが加速しています。特にクレジットカードの取引では、AIによる不正検知についての期待が高まっています。 この記事では、AIを活用した不正検知の導入メリット、注意点、導入事例などを紹介します。
-
建設・土木・ゼネコンにおけるAI技術:AI活用領域と、事例6選をご紹介
機械学習やディープラーニングの技術進化で、AIの活用・導入が一般的になりつつあるなか、AIとの親和性から、高いレベルで導入が進んでいる業種と、そうでない業種もあります。建設業界ではゼネコンをはじめ、さかんにAI投資が進められており、AIによる業務改善や品質向上など、建設現場へのプラスの効果が期待されています。 今回は、建設業界ならではの課題や今後の動向、実際の活用事例についてご紹介していきます。
-
製造業でのAIによる異常検知と原因の特定
製造業において、日々稼働している生産ラインの中には、製品を作るためのさまざまな機器があります。これらの機器が突然、なんの前触れもなく故障し、停止してしまうと、生産ライン全体の停止、修理にかかる費用、新しい機器のリース代など、さまざまなコストがかかり、製造する上でのデメリットとなります。 上記から、異常検知は製造業においてクリティカルな問題です。また、異常検知の実施にあたっては現場の長い経験や、高度な技術も求められるため、工場や生産管理の現場担当者から見ると、異常検知は頭を悩ませる課題のひとつとなります。 今回は、そのような異常検知について、その概要、方法、さらには最新のAI・機械学習を活用した異常検知の方法についてもご紹介します。