-
AI開発外注の費用相場・期間は?おすすめ開発会社を解説
AIを開発したいと思った時にまずぶつかる壁は、「自社内で開発するか外注するか」です。 社内に開発人材がいる場合もいない場合も、AI開発の外注は選択肢の1つとして考えられます。 AI開発の外注にはメリット・デメリットがあるため、AI開発において重視する内容によって外注が最適かどうか変わってきます。 本記事では、AI開発を外注しようか検討している方に向けて、AI開発の外注にかかるコストやメリット・デメリットを解説します。さらに、AI開発に強いおすすめの外注先もご紹介するので、開発会社選びの参考にしてみてください。
-
ノーコードでAIを開発する方法とは?開発事例・無料の開発プラットフォームを紹介
ここ数年、国内外の開発者の間で「ノーコード(NoCode)」という言葉がよく聞かれます。 ノーコードとは、文字通りコードいらずでWebサイトやWebサービスを開発する手法のことです。 このノーコードの開発手法を使って、AI(人工知能)を開発しようとする動きが出てきています。 本記事では、ノーコードでAIを開発して自社課題を解決したい方に向けて、ノーコードでどんなことができるのかを解説していきます。 ノーコードを使ってAIを開発した事例も紹介しているので、ぜひ参考にしてみてください。
-
機械学習(ML)とは? メリット・種類・業界や課題別の活用例・実施方法を解説
機械学習(Machine Learning)とは、コンピューター(Machine)が与えられた大量のデータを処理・分析することでルールやパターンを発見する技術・手法のことです。学習の結果明らかになったルール・パターンを現状に当てはめることで、精度の高い将来予測が可能となります。 高度なコンピューターを使用することで、人間の脳では処理しきれない複雑な要素を加味した分析・学習が可能となりました。その結果、近年ではさまざまな領域において人間による作業の精度向上・効率化に役立てられています。自動運転や医療、人間の購買行動の分析など、さまざまなビジネス領域で機械学習が実用化されており、今後のマーケットで生き残っていくためには必須の技術になりつつあるといえるでしょう。 本記事では、機械学習(ML)の概要やメリット、種類に加え、業種別・課題別の活用例を紹介します。実際に取り入れる際の作業フローも紹介しているので、機械学習の活用に興味がある方はぜひ参考にしてみてください。
-
AIやExcelを活用したコールセンターの入電数予測の方法
コールセンターにおけるコール予測(呼量予測、forecaster)とは、お客様からの問い合わせなどセンターで受信する電話の量を予測することをいいます。 コールセンターの運用コストを増加させる要因のうち大きなものが、コミュニケーターの人件費です。コミュニケーターは顧客からの入電に応じてオペレーションの対応をするため、実際の入電数よりも多くのコミュニケーターを配置すると、対応がなく待ち状態のコミュニケーターが増えて、不要な人件費の増加に繋がります。また、逆に配置人数が少ないと呼び出し中でつながらないなどのクレームの要因になりかねません。適正な人員をコンタクトセンターに配置することで、十分な顧客満足度が提供できる状態でオペレーションを行っていることが理想です。今回は、Excelを活用したコール予測、AI(人工知能)による機械学習を用いた時系列分析で、コール予測を実現する方法をご紹介します。
-
予測分析とは?活用事例とその手法・ツールをご紹介
予測分析とは、過去の行動パターンを特定し、将来の結果を予測するために、大量のデータに数理モデルを適用する手法です。 機械学習、データマイニング、統計アルゴリズムなどの複数の組み合わせがもたらす「予測的手法」により、予測分析ツールは、単純な相関付け以上の機能を実装できます。ビジネス分野では、予測分析が以下に示すようなさまざまな用途に利活用されています。 ・需要と供給のより正確な予測コンピューターネットワークに悪影響を及ぼす脅威と潜在的問題の特定 ・保険サービスや金融サービスにおけるセキュリティリスクの低減 ・クレジットカード詐欺のリアルタイム検出 予測分析機能を組み込んだソフトウェアが増えつつあり、これはあらゆる規模の組織体でユーザーにとって身近なものになっています。予測分析はデータサイエンスや高度な分析に関する訓練を受けていないエンドユーザーにも実務上の価値をもたらします。これは、まさにすべてのユーザーが恩恵を受ける機会を提供することに値します。この概念を「データの民主化」と呼びます。誰もがデータを利用してより良い意思決定を下せるように、組織全体でデータを誰もが利用できるようにするという概念です。 本記事では、予測分析がなぜ重要なのか、予測分析の実活用例、予測分析の手法、機械学習やデータマイニングなどの他のテクノロジーとの関係、モデルの役割、予測分析を始めるにあたってのヒントについてご紹介します。
-
ディープラーニング(深層学習)とは?概要や、業界・課題別の活用例・導入手法を解説
AI(人工知能)という言葉は昔からありましたが、近年いよいよ本格的に生活のなかで活用されるようになってきました。そのなかで重要な役割を果たしているのがディープラーニング(深層学習)です。従来は機械に任せるのが難しかったケースにも対応できるようになり、さまざまな形で日常生活やビジネスに変革をもたらしています。 しかし、ディープラーニングがどのような仕組みなのか、具体的に理解している方は少ないでしょう。本記事では、ディープラーニング(深層学習)の仕組みや、AI・機械学習との違い、さらに業種別のビジネスへの活用例を紹介します。 ディープラーニングを事業活動に活かしたいとお考えの経営者・事業担当者の方は、ぜひ参考にしてみてください。
-
異常検知とは?概要と業界別の実例、その実現方法をご紹介
近年、機械学習を用いた異常検知システムの開発がさかんになってきています。 日本の製造業は、従来より世界的に見てもとりわけ優秀ですが、現在は少子高齢化による後継者不足などの課題に直面しているのが現状です。 このような国家の危機的状況ともいえる大きな課題を解消するために、機械学習による異常検知システムが脚光を浴びています。 異常とは、通常と異なる振る舞いをすることで、日常生活においても、安定していた株価が急変したり、動きを保っていた機械が急におかしな動きをしだしたり、アカウントごとの投稿が一定量だったSNSの投稿量が激増した(炎上)など、「いつもと違う」ことに気が付く急激な変化は、私たちの身の回りでもよく起こっています。 今回の記事では、製造業や金融業などで活用されている、機械学習における異常検知の手法やアルゴリズムなどをご紹介します。機械学習を用いた異常検知による自動化を検討している方は、ぜひご活用ください。
-
マーケティングへの機械学習の適用方法・事例をご紹介
近年は機械学習(Machine Learning:ML)が大きな進化を遂げており、マーケティング分野にも数多く利用されています。Webサイト上のチャットボットによる顧客対応や、自動で最適な広告枠を入札するプログラマティックバイイングなど、従来は人手で行なっていた作業や、人では対応しきれなかった領域に機械学習が活用されているのです。 また、日常生活においてもほとんどのスマートフォンには音声アシスタント機能が搭載されています。文字を入力せず音声認識によって調べものをする人も増えており、今後はAI音声アシスタントがマーケティングに直結してくる可能性は高いでしょう。 AIや機械学習のマーケットは飛躍的な成長を遂げており、生活や仕事において活躍する機会が増えています。つまり今後のマーケティングにおいては、機械学習をいかに活用できるかが大きなカギを握ります。 本記事では、機械学習をマーケティングに適用する方法や実際の活用事例を紹介します。今後マーケターの仕事がどのように変化していくのか、押さえておきたい方はぜひ参考にしてみてください。
-
食品業界のAI活用方法を、事例8点を交えてご紹介
近年、AIの進化はさまざまな業界に変革をもたらしています。食品業界においても、より豊かな食生活を実現するためにAIの活用を目指す動きが増えてきました。また、世界的にみても食料廃棄率の高さは大きな問題となっており、食品企業が果たす社会的な役割についても注目度が高まっています。 今回は、食品業界におけるAIの活用方法について、8つの事例を挙げながら解説します。食品業界が抱える課題を解決するヒントとなりうる領域なので、是非参考にしてください。
-
「品質改善」AI活用 事例7選、製造業・工場のAIカイゼンをご紹介
近年では、製造業に限らず様々な分野でAI技術が活用されるようになりました。 しかしながら、AIの導入はAI開発者の現場知識(ドメイン知識)が不足していることにより、実運用には至ってないプロジェクトが数多くあると言われています。 また、製造プロセスは複雑化している傾向にあり、人手不足やコスト不足で悩む企業が数多く見受けられます。 数年前に取られていたアプローチは既に通用しなくなっている場面も増えていると言っても過言ではないでしょう。 このような問題に対しては、AI技術を活用した製造品質改善が注目されています。 本記事では、実際の企業での導入事例を交えて、品質改善に取り組む施策について詳しく解説していきます。
-
AIを活用した故障予測とは?AI導入の流れや活用事例を紹介
IoT(Internet of Things)やAI(人工知能)は近年大きな進化を遂げており、工場における機械や製品の異常検知、故障予測などにも活用されるようになりました。製造工程が複雑化するなか、人間の目視による確認には限界があるため、AIのさらなる活躍が期待されている分野です。 しかし、IoTやAIを活用して故障予知をするためには、そのメカニズムを理解したうえで適切に活用する必要があります。本記事では、AIを用いた故障予測の具体的な方法や、実際に故障予知を導入した8つの事例を紹介します。 AIを活用した故障予知により、安定生産・稼働率向上を実現したいという方はぜひ参考にしてみてください。
-
製薬業界におけるAIの活用と事例紹介
製薬業界のAI適用領域と、実事例をご紹介
-
自動車部品 業界におけるAI活用事例7選をご紹介
品質向上や業務効率化の面において、とくに活躍している自動車部品業界のAI。本記事はこの自動車部品業界のAI活用事例を7つ紹介します。中には検査不備がゼロになったり、生産効率が4倍以上になったりといった大きな効果を享受している企業もあります。 また、それぞれの企業が全く異なるシステムを導入しているため非常に興味深いです。
-
サプライチェーン領域におけるAI活用例9選
サプライチェーンとは、商品がユーザーに届くまでの一連の流れのことをいいます。 具体的には、材料の調達から製造、配送、販売といった工程のことです。 サプライチェーンを管理する方法は、サプライチェーンマネジメント(SCM)と呼ばれます。 近年、サプライチェーンマネジメントにAIを導入することで、売上を最大化する動きが加速しています。 マッキンゼーの2018年のAI調査においても、約8割の会社がサプライチェーンへのAI導入にポジティブな効果を認めています。 サプライチェーンマネジメントでAIはどのように活用できるのか、導入事例を9つご紹介します。
-
金融機関はAIをどのように扱えるのか?実例とともに紹介
業務効率化やセキュリティ強化の面で活躍している、金融機関のAI。本記事ではこの金融機関におけるAIの導入メリットを2つ紹介します。また記事後半ではさまざまな銀行の多種多様なAI導入事例も解説します。それぞれの銀行が全く異なったAIを導入しているため、非常に興味深いです。
-
生産管理と品質管理の違いとは?AIを活用した最先端の事例もご紹介
生産管理とはモノづくりの現場で行われる受注から納品までを含む業務のことです。一言で生産管理といっても、生産計画、受注管理、発注管理、在庫管理、製造管理、外注管理、進捗管理、品質管理までの工程が含まれます。 生産管理は三つの要素である「品質」「原価」「納期」が重要です。なぜなら、高い品質の商品を、できるだけ原価を安くし、短期間で作ることが企業の利益に深く結びついているからです。 この記事では生産管理と、その一工程である品質管理の関係性を整理しながら、AIを活用した事例についても紹介します。
-
面白いAI・人工知能の使われ方をまとめました
AI技術は日々刻々と進化しています。これに伴い需要を予測して食品ロスを減らすAIや、クレジットカードの不正を検知するAIなど最近は、さまざまなAIが登場し始めています。 そこで本記事では、AI活用事例の中でも一風変わった面白い事例を8つ紹介します。本記事をAI活用のアイデアの参考にしてみてください。
-
AIを活用した生産性向上の方法と実例をご紹介
AIを活用することで、労働力不足の解消や、働き方改革の推進が可能となり、生産性を向上できることをご存知ですか。AIの導入で成功するためには、なぜAIを使うのか、実際にどんなデータを用いれば課題が解決できるのかを明確にすることが大切です。この記事では、ビジネスの現場で、AI活用が進んでいる背景やAI技術を活用するメリット、活用事例について解説します。また、AIを導入する際のポイントも紹介しますので、ぜひ参考にしてください。 目次 AI導入が広がる理由とは? AI導入による、生産性向上事例9選 MatrixFlowを活用したAI導入 AIを活用した生産性向上の方法と実例:まとめ
-
AI導入の失敗例と、成功のポイントとは?
AI導入の失敗はよくあること。「AIはすごいらしい」という時期は過ぎ、AIを導入する企業は確実に増加しています。日々の生活でもAIに遭遇することが増え、AI導入の検討段階に入ったという企業もあるでしょう。 今回は、AI導入の悪い事例を具体的に紹介します。失敗の原因を知り、自社の取り組みの際の参考にしてみてください。
-
データサイエンティストは消える?仕事がなくなるというのは本当?
データサイエンティストという職業をご存じでしょうか。スマホを手に生活をするスタイルに移行したことで、膨大なデータ(ビッグデータ)が日々生まれています。これらのデータを企業の課題解決に活かすことが、データサイエンティストの仕事と言えます。そのため、ビジネスとITどちらの世界にも精通することが求められます。 企業側の需要も高まり、高い年収も見込まれるようになりました。そのため、データサイエンティストを目指す学生・ビジネスマンが増える傾向にあります。 一方で、データを扱うという業務から「将来的にAIに取って代わられて、データサイエンティストは消えるのではないか?」という議論も生まれています。 その観点から、データサイエンティストの仕事内容、将来性、重要性、また最新のAIの動向も含めて紹介していきます。
-
生産計画をエクセルで行う場合の、メリットやデメリットを解説
生産計画を策定する際には、原材料調達から出荷までを円滑に行うため、全体を見渡した設計が必要になります。生産計画に落ち度があれば、原価アップや品質の悪化、納期遅れなどにつながるため、会社の業績を左右する重要な役割です。 中小規模の製造業であれば、エクセルで生産計画を作成しているケースは多いでしょう。エクセルは生産計画以外でも業務に使用する頻度が高く、多くのビジネスパーソンにとって使い慣れたツールです。 エクセルの機能を使いこなせれば、生産計画を作成・管理する効率も格段に向上させることが可能です。しかし、エクセルで生産管理を行うことにデメリットはないのでしょうか。 本記事では、生産計画をエクセルで作成・管理することのメリット・デメリットを徹底解説します。また、エクセル以外の専用ツールを導入する価値についても紹介するので、ぜひ参考にしてみてください。
-
AIの生産管理への活用方法とは?実例とともに解説!
近年は少子高齢化による就労人口の低下により、多くの産業において、付加価値や生産性の向上、業務効率化といった課題が明確になってきております。特に製造業界では、労働力不足が深刻化しています。 過去にはこれらの課題を解決するための有効な手法としてIT化が推進されてきました。最近では、さらにAI・人工知能を導入する企業も散見されています。特に、製造業をはじめとした生産管理において、AIを活用する企業は年々増加しています。生産管理の分野において、AIを活用し生産性向上を目指しています。 本記事では、生産管理の場面で、具体的にどのようにAIを活用していくのか、そのメリット・方法・事例も含めてご紹介をさせていただきます。
-
AIを使った在庫管理の事例6選!AIカメラを使った在庫管理とは?
在庫管理を行う場合、次のような課題を抱えている企業は多いのではないでしょうか。 ・担当者の知識や経験によって管理品質にバラツキがある ・データ入力や作業の人力ミスが起こりやすい ・正確な需要予測ができずに在庫の欠品、過剰在庫が発生する こうした課題も、AIを活用した在庫管理を導入することで解決できます。 この記事ではAIを活用した在庫管理のメリットや、導入方法、実際に導入している業界の活用事例を解説していきます。 ■この記事でわかること ・AIを使った在庫管理の事例 ・AIの在庫管理で売上を最大化する方法 ・カメラ・画像認識を使って在庫管理する方法
-
AI・機械学習に必須のデータの前処理とは?正規化・標準を使った前処理方法を解説
業務効率化や売上拡大のため、ビジネスでのAI開発・活用が進んでいます。 ですが、AI活用に「データ前処理」が重要であることはあまり知られていません。 データ前処理は、AI開発までの作業工程の8割を占めるとも言われるほど重要な工程です。 本記事では、AIにおけるデータ前処理とは何なのか、具体的なデータの前処理方法を解説していきます。