-
機械学習(ML)とは? メリット・種類・業界や課題別の活用例・実施方法を解説
機械学習(Machine Learning)とは、コンピューター(Machine)が与えられた大量のデータを処理・分析することでルールやパターンを発見する技術・手法のことです。学習の結果明らかになったルール・パターンを現状に当てはめることで、精度の高い将来予測が可能となります。 高度なコンピューターを使用することで、人間の脳では処理しきれない複雑な要素を加味した分析・学習が可能となりました。その結果、近年ではさまざまな領域において人間による作業の精度向上・効率化に役立てられています。自動運転や医療、人間の購買行動の分析など、さまざまなビジネス領域で機械学習が実用化されており、今後のマーケットで生き残っていくためには必須の技術になりつつあるといえるでしょう。 本記事では、機械学習(ML)の概要やメリット、種類に加え、業種別・課題別の活用例を紹介します。実際に取り入れる際の作業フローも紹介しているので、機械学習の活用に興味がある方はぜひ参考にしてみてください。
-
【業界別】AI・人工知能の活用事例20選!ビジネスにおけるAIの今後は?
近年、AI(人工知能)は様々な分野で活用が進んでいます。 AIを組み込んだ便利な仕組みやサービスが次々に登場し、あらゆる業界で活用され始めています。 この記事では、AIがどのように我々の生活や仕事を便利にするのか、業界・産業別にAI活用事例を解説していきます。
-
AIで業務効率化を行った実例14選
昨今ではさまざまな業界や分野においてAIが活躍し始めています。ただ実際にAIがどのように活躍しているか、具体的に把握していない方も多いのではないでしょうか。 そこで本記事では、AIの業務効率化事例14選を紹介します。人事や物流、問い合わせ対応など様々な分野の事例を解説するため、きっと自社で生かせる事例が見つかるはずです。
-
建設・土木・ゼネコンにおけるAI技術:AI活用領域と、事例6選をご紹介
機械学習やディープラーニングの技術進化で、AIの活用・導入が一般的になりつつあるなか、AIとの親和性から、高いレベルで導入が進んでいる業種と、そうでない業種もあります。建設業界ではゼネコンをはじめ、さかんにAI投資が進められており、AIによる業務改善や品質向上など、建設現場へのプラスの効果が期待されています。 今回は、建設業界ならではの課題や今後の動向、実際の活用事例についてご紹介していきます。
-
AIを活用した生産性向上の方法と実例をご紹介
AIを活用することで、労働力不足の解消や、働き方改革の推進が可能となり、生産性を向上できることをご存知ですか。AIの導入で成功するためには、なぜAIを使うのか、実際にどんなデータを用いれば課題が解決できるのかを明確にすることが大切です。この記事では、ビジネスの現場で、AI活用が進んでいる背景やAI技術を活用するメリット、活用事例について解説します。また、AIを導入する際のポイントも紹介しますので、ぜひ参考にしてください。 目次 AI導入が広がる理由とは? AI導入による、生産性向上事例9選 MatrixFlowを活用したAI導入 AIを活用した生産性向上の方法と実例:まとめ
-
データサイエンティストには簡単になれるのか?今後求められる視点を解説
近年注目されているデータサイエンティストという職種。そもそもデータサイエンティストとはビッグデータから必要な情報を抽出して、企業の問題解決をしていく職業です。本記事ではデータサイエンティストになるための方法や将来性、今後求められる視点を中心に紹介します。