需要予測は当たらない?AIで高い精度を実現する方法
企業が抱える在庫削減は、ビジネスにおける非常に重要な課題のひとつです。少ない在庫でも欠品を起こさないようにするためには、どのようにすればよいでしょうか? 答えは一言でいうと、将来の需要を正確に予測して、必要なときに必要なだけ生産すればよいのです。 しかし、新型コロナウイルスによる需要の激減を数年前から予測できた人はどれだけいたのでしょうか? また、来月発売される新製品の需要を完璧に予測することは可能でしょうか? 残念ながら「需要予測とは当たらないもの」と言っても過言ではありません。 今日、多くの企業がビジネスの現場で需要予測に取り組んでいます。 データを集計、加工、分析しレポートとして出力するシステムを導入したり、独自の予測モデルを作ったり、あるいは在庫担当者の長年の経験に頼ったり、方法はさまざまですがほとんどの企業が需要予測をさまざまな形で取り入れていると言ってよいでしょう。 長年多くの企業で取り組まれてきたにもかかわらず近年ますます需要予測の重要視されているのはなぜでしょうか? 本記事では、需要予測の基礎についておさらいし、需要予測を高い精度で実現する方法についてご紹介します。
-
目次
需要予測が重要な背景
需要予測が当たらない?その理由とは
高い精度で需要予測を行うための方法とは
精度の高い需要AI予測を実現できる「MatrixFlow」 -
需要予測が重要な背景
昨今のビジネスにおいて需要予測が重要視される理由とは何でしょうか?
これは皆さんが取り組まれている普段のビジネスについて考えると分かりやすいでしょう。皆さんのビジネスにおいて扱っている商品やサービスは、おそらく市場が飽和しているのではないでしょうか。
すでに、モノやコトが溢れている近年においては、市場で類似した商品やサービスが競合しているため、単純な商品の魅力だけではない付加価値で勝負することが少なくありません。
そうした中で、他社に追随を許さない、高い競合優位性を手にするにはどうすればよいのでしょうか?
まず、第一に考えられることが需要予測によって収益の最大化を図り、そこで得た利益や資金からあらたな商品やサービス、あるいはマーケティングに集中的で持続的な投資を行うことです。
このような、需要予測システムを効果的に用いるためには「予測・対策考案(Plan)→販売(Do)→効果検証(Check)→対策練り直し(Act)」 のPDCAサイクルを回していく必要があります。ここで言う需要予測とは、在庫担当者や販売担当者の経験・勘などといった属人的な要素に頼ったものではなく、データ分析による客観的な基準をもとにしたものを指しています。
従来、企業によっては、ベテラン従業員の経験・勘から需要量を予測し、意思決定を下している場合もありました。ただし、このやり方では、属人的な部分が多いために、会社に知見が蓄積されず、もし当該従業員が退職した場合は、従来通りの需要予測が実施できなくなり、大変リスクの高い状況でした。さらに、このような属人的な需要予測では、客観的なデータをもとに分析をしているわけではないため、予測精度は実際あまり高くありません。
「〇〇さんは長年の経験からこの業界を熟知しているため、予測は正確だ」と思えても、それは新人や業界を知らない他人と比べて高いというくらいのもので、やはりデータをもちいて分析を行った需要予測には劣る部分があると言わざるを得ない状況です。
また、実際の根拠に基づいていないことも多いため、今回はたまたま予測が当たったとしても、少し市場や商品の状況が変わると、どの部分が変数の変化で、予測がどのように変わるのかを把握していないと実際のところ一回きりの予測結果となってしまいます。
市場の変化による兆候をいち早く察知するためにも、やはりデータ分析に基づいたビジネスの基準値としての需要予測が欠かせないということになります。 -
需要予測が当たらない?その理由とは
このように、重要である需要予測ですが、トレンド予測はなかなか当たりません。
トレンドとは、いわゆる流行や市場の時系列の動きであり、これを予測するのは至難の業です。
大手アパレルメーカーでは18年夏に米大手IT広告企業と共同プロジェクトを開始しました。
世界中で集めたビッグデータを分析し、該当する年に流行する色やシルエットを予測し、AIを活用した精度の高い生産計画を立てることに活用を図っています。しかし、同社社長は情報・製造・小売業への取り組みについては、まだまだ取り組みの途中であるという認識です。直近の決算期において在庫(棚卸資産)が増えてきており、店頭での値下げが増えており、消費者の買い控えを誘発するといった悪循環が起きているという分析結果もでています。
自他共に認めるデータドリブン経営企業でもAIによる需要予測は難しいことが改めて認識されました。
その理由は、実はAIの特性を理解すれば簡単に説明ができるのです。まず、AIを用いた需要予測においてAIが高い予測精度を出すためには、以下の条件が満たされている必要があります。
・データフォーマットの統一
・十分な量のデータ
・想定外の外的要因がないまず第一に、データフォーマットが統一されていることは重要な要素です。
こちらが統一されていないとAIは正しい予測ができないからです。
以下の2点に注意しましょう。・データを手入力する際のミスや表記ゆれ(全角、半角なども含めて)
・ECと実店舗でデータのフォーマットが違う(品番などの表記の違いなども含めて)上記2つはほんの一例ですが、こういった細かな点をまずは統一することが重要です。
なお、アパレル産業はデジタル化が他産業と比べ遅れていると言われていますので、会社内だけではなく、業界全体での取り組みも必要となってきます。次に、大量のデータ(売上データ、在庫データ等の生データ)があるのは、よく売れている人気商品であるという制約条件があります。
新商品は基本的には売り上げの実データがありませんので、予測の精度にばらつきが大きくなります。そして、3つ目の「想定外の外的要因」が実は最も重要です。実際のトレンドや需要は、外的な要因に大きく左右されつづけています。
想定外の要因としては、以下のようなものがあります。・近隣に大型商業施設が建設される
・近隣にマンションが建設される
・競合店が値下げ → 自店の売上は下がる
・競合店が値上げ → 自店の売上は上がる
・店舗従業員のその日の気分やメンバーの顔ぶれこのように挙げていくとキリがありませんが、現在のAIはこうした外的要因までも正確に予測に反映させる技術水準には達していないのが現状です。
-
高い精度で需要予測を行うための方法とは
需要予測が「正確には当たらない」ことを前提にするのがポイントとはいえ、毎回、予想と結果が乖離した需要予測を行ってしまっては、ビジネスにおいて、実際に活用できなくなります。
そこで検討していきたいものとして、需要予測の精度を向上させる取り組みの実施です。
コツコツとした積み上げにはなりますが、100%当たる予測は存在しなくても、その精度を0.1%でも上げていくことで、最終的には収益の最大化に近づきます。そのためにはまず、分析に使用するデータの品質の向上を目指しましょう。
データは、まず何よりも正確であることが重要です。
長らく更新されていないデータや、取得状況の異なる信憑性の低いデータを使っても、信頼性の高い需要予測は行えないでしょう。
一見当たり前と思われることに、実はポイントが隠されていることが多くあります。
多くの企業で行われている需要予測には、データそのものに不備があり、結果、需要予測が正しく実施されていない傾向があります。次に、データの異常値に対する対処法も重要です。
小売店におけるマーケティング活動によって、数日間だけ売上が急増することがあると思います。
この場合は、一時的に売上が増大した分のデータは異常値として需要予測モデルの入力データから取り除くか、近似などの補正処理を行った上で、慎重に取り扱う必要があります。
異常値が入ったまま需要予測を実施しても、正しい予測にはならないでしょう。需要予測モデルを継続的に改善する取り組みも成功への大きなカギになります。
正確なデータを使用して行った需要予測も、実際の需要と大きく乖離することがあります。
そのとき、単なる失敗だったと終わらせるのではなく、予測と結果を比較し検証を行い、乖離の原因や理由を探った上で、その情報を需要予測モデルの改善に反映させましょう。
重要なのは、この取り組みを継続的に行っていくことです。
これを継続的に行うことで、今日よりも明日、明日よりも明後日、さらに1年後と需要予測の精度は上がって行くものです。決して急激な伸びは期待できないのですが、平坦に近いほど緩やかな精度向上でも、継続していくことで、より高精度な需要予測モデルに近づいていきます。
また、昨今の需要予測にはAI・機械学習が備わっています。
AI・機械学習の本質は大量のデータから知見を導き出すことですので、つまり、分析対象となるデータが多いほど精度が増していくわけです。
このことから需要予測は、ある程度長い年月をかけて育てて行くものだと考え、結果に一喜一憂するのではなく、地道な取り組みを継続していきましょう。 -
精度の高い需要AI予測を実現できる「MatrixFlow」
プログラミングを使わずにAIを作れるMatrixFlowでの需要予測の例を簡単にご紹介します。
ここでは、在庫最適化により在庫を予測します。
まず、「在庫数の適正化」には、最適な需要の予測が欠かせません。
需要予測とは商品やサービスの短期的あるいは長期的な需要を予測するものです。
この需要予測は、これまでは担当者の経験や勘など、感覚的・属人的な判断が主でしたのであまり精度がよいとはいえませんでした。
売上を最大化するための精度の良い在庫予測をするためには、客観的な指標を用いた解決手法が必要となります。
このような背景から、クラウド、ビッグデータや処理技術の発展を背景としてAI・機械学習技術を活用した在庫最適化の課題解決への関心が高まっています。実際に多くの企業ではAI・機械学習モデルを用いて需要予測を高度化するなど、在庫最適化の課題解決に向けた取り組みが急務となっています。
AIを活用することで、精度の高い需要予測を行い、売上最大化のための在庫予測の手法についてご紹介しました。
MatrixFlowでは、在庫最適化のための需要予測AIを素早く簡単に作成することができます。
各商品の売上・注文数、在庫、顧客、各店舗の情報などを細かく設定して、過去の消費量から必要な消費量を予測し、各商品の必要在庫数を予測でき、無駄になっているコストを検知することが可能です。詳細は、以下のMatrixFlowのお役立ちサイトをご覧ください。
-
MatrixFlowでスピーディに分析
MatrixFlowはAIを素早く簡単に作成することができる、AI活用プラットフォームです。
MatrixFlowのAutoFlow(自動構築AI)を使用することで精度が高く信頼性の高い需要予測を、ボタンをクリックしていくだけでスピーディに実現することができます。
プログラミングなどの専門知識を持たない人材でもAIの作成・運用が可能です。予測結果と共に、結果に与えた影響度合いである重要度も見ることができます。
以下のチュートリアルでは、上の図のような結果を得ることができるAIの作成手法を説明しています。
編集部Pickup記事
-
ノーコードでAIを開発する方法とは?開発事例・無料の開発プラットフォームを紹介
ここ数年、国内外の開発者の間で「ノーコード(NoCode)」という言葉がよく聞かれます。 ノーコードとは、文字通りコードいらずでWebサイトやWebサービスを開発する手法のことです。 このノーコードの開発手法を使って、AI(人工知能)を開発しようとする動きが出てきています。 本記事では、ノーコードでAIを開発して自社課題を解決したい方に向けて、ノーコードでどんなことができるのかを解説していきます。 ノーコードを使ってAIを開発した事例も紹介しているので、ぜひ参考にしてみてください。
-
機械学習のビジネスにおける活用事例を徹底解説
様々な分野・企業で、AIや機械学習の活用が進んでいます。 iPhoneのSiriやGoogleのアレクサなど、日常生活にも溶け込んでいるほどです。 AIにデータを機械学習させれば、膨大な時間がかかる作業も分析も一瞬で終えることができます。 AIは学習させるデータでどんな使い方もできるため、その可能性は無限大です。 本記事では、AIや機械学習をビジネスに活用する方法や、導入事例をご紹介します。
-
AIツール・開発プラットフォームおすすめ13選!無料AIツールも?
AI(人工知能)を使ったツールやアプリは、ここ数年で急激に増えました。身近なところだと、有名画家風のイラストが作成できるアプリや音声読み上げソフトなど、一度は耳にしたことがある方もいるのではないでしょうか。 企業においても課題解決ができるAIツールや、AIを開発できるプラットフォームへ注目が集まっています。ですが、AIツールと一口にいっても、開発できるAIの種類や解決できる課題も様々です。 本記事では、AIを開発できるプラットフォームや、無料で使える便利なAIツールをご紹介します。AIツールを使ってどんなことができるのか、ツールによる違いを知りたい方は必見です。
-
AIによる需要予測の仕組みとは?導入事例・費用・アルゴリズムを解説
過去の販売データを元に商品の発注数や売れ行きを予測するのは、小売業界では当たり前に行われています。 ですが、経験や勘に頼った予測は個人の力量に依存するため、予測に再現性がありません。予測の精度も人によってバラバラなため、常に高い精度で予測することは難しいです。 こうした課題を解決する方法の1つとして、AIを使った需要予測が注目されています。AIを使うことで、スキルに依存しない高精度で需要予測が期待されているのです。 本記事では、AIを使った需要予測の仕組みや導入事例について解説していきます。需要予測をして在庫管理の最適化や売上増加を狙っている方は、ぜひ参考にしてみてください。
-
製造業におけるAI活用事例23選!各社の導入方法・例をご紹介
ここ数年でAi技術は格段に進化を遂げています。様々な領域でAIの活用が進んでいますが、製造業ではどのくらいAIの導入が進んでいるのでしょうか。製造現場での実用化にはいまだ課題も残っています。AIを活用できる人材がいない、AIの導入方法がわからず、活用が進んでいない企業も多いのではないでしょうか。 この記事では、実際にその仕組みや導入のメリット、成功・失敗事例を紹介していきます。製造業でAIを導入するうえでの注意点についても解説していますので、ぜひ参考にしてください。
-
ディープラーニング(深層学習)とは?AI・機械学習との違いを簡単に解説
ディープラーニング、AI、機械学習。誰しも、テレビや本で一度は耳にしたことがあると思います。 ですがこれらが何を指しているのか、なぜ注目を集めているのか知っている方は少ないのではないでしょうか。 本記事ではAIを学んだことがない方向けに、ディープラーニングとは何なのかを簡単に解説します。 ディープラーニングと機械学習の違いがわからない方や、ディープラーニングの活用事例を知りたい方も必見です。
関連した事例
-
予測分析ツールおすすめ7選比較!AIで予測できること・無料ツールはある?
将来の売上や株価を予測することができれば、ビジネスや投資において非常に有利に動けます。しかし、人の勘や経験に頼った予測には限界があり、正確な予測をすることは困難です。 そこで、あらゆる業界で「予測分析ツール」が注目されています。予測分析ツールを使えば、膨大なデータを分析し、過去の傾向をもとに未来を予測できます。さらに、機械学習や人工知能を使った予測分析ツールを活用すれば、誤差を減らしてより高い精度で予測を行うことができます。 本記事では、予測分析ツールでどんなことが予測できるのか、おすすめの予測分析ツールをご紹介します。AIやツールを使った予測に興味がある方は、ぜひ参考にしてみてください。
-
AI開発外注の費用相場・期間は?おすすめ開発会社を解説
AIを開発したいと思った時にまずぶつかる壁は、「自社内で開発するか外注するか」です。 社内に開発人材がいる場合もいない場合も、AI開発の外注は選択肢の1つとして考えられます。 AI開発の外注にはメリット・デメリットがあるため、AI開発において重視する内容によって外注が最適かどうか変わってきます。 本記事では、AI開発を外注しようか検討している方に向けて、AI開発の外注にかかるコストやメリット・デメリットを解説します。さらに、AI開発に強いおすすめの外注先もご紹介するので、開発会社選びの参考にしてみてください。
-
ノーコードでAIを開発する方法とは?開発事例・無料の開発プラットフォームを紹介
ここ数年、国内外の開発者の間で「ノーコード(NoCode)」という言葉がよく聞かれます。 ノーコードとは、文字通りコードいらずでWebサイトやWebサービスを開発する手法のことです。 このノーコードの開発手法を使って、AI(人工知能)を開発しようとする動きが出てきています。 本記事では、ノーコードでAIを開発して自社課題を解決したい方に向けて、ノーコードでどんなことができるのかを解説していきます。 ノーコードを使ってAIを開発した事例も紹介しているので、ぜひ参考にしてみてください。
-
ディープラーニング(深層学習)とは?AI・機械学習との違いを簡単に解説
ディープラーニング、AI、機械学習。誰しも、テレビや本で一度は耳にしたことがあると思います。 ですがこれらが何を指しているのか、なぜ注目を集めているのか知っている方は少ないのではないでしょうか。 本記事ではAIを学んだことがない方向けに、ディープラーニングとは何なのかを簡単に解説します。 ディープラーニングと機械学習の違いがわからない方や、ディープラーニングの活用事例を知りたい方も必見です。
-
プログラミングでAIを開発する方法!必須のプログラミング言語・入門知識を解説
近年急速に進化しているAI(人工知能)。 AIを活用すれば、今まで大量の人と時間を投下していた業務も効率よく精度高く遂行できます。 人と同じような動きができるためすごい存在に思えるAIですが、プログラミングを学べば初心者でも開発が可能です。 本記事では、プログラミングをしてAIを開発する方法やAI開発におすすめのプログラミング言語をご紹介します。
-
機械学習(ML)とは? メリット・種類・業界や課題別の活用例・実施方法を解説
機械学習(Machine Learning)とは、コンピューター(Machine)が与えられた大量のデータを処理・分析することでルールやパターンを発見する技術・手法のことです。学習の結果明らかになったルール・パターンを現状に当てはめることで、精度の高い将来予測が可能となります。 高度なコンピューターを使用することで、人間の脳では処理しきれない複雑な要素を加味した分析・学習が可能となりました。その結果、近年ではさまざまな領域において人間による作業の精度向上・効率化に役立てられています。自動運転や医療、人間の購買行動の分析など、さまざまなビジネス領域で機械学習が実用化されており、今後のマーケットで生き残っていくためには必須の技術になりつつあるといえるでしょう。 本記事では、機械学習(ML)の概要やメリット、種類に加え、業種別・課題別の活用例を紹介します。実際に取り入れる際の作業フローも紹介しているので、機械学習の活用に興味がある方はぜひ参考にしてみてください。
-
データドリブン経営とは?成功事例からわかる必要性・メリット解説
ビジネスでデータを活用するのは、今やどの企業も当たり前に行なっています。 ですが、データを効果的に活用できている企業はあまり多くありません。 データを部分的にしか活用できていない、人によってデータ活用のレベルが異なる企業が多いのではないでしょうか。反対に、データを活用しようと意気込んで収集した結果、膨大なデータを持て余している場合も見受けられます。 このように、データを有効活用できていないと感じる方々に知っていただきたいのが、「データドリブン経営」という考え方です。本記事では、データドリブン経営とは何かを簡単に解説し、データドリブンで数字改善した成功事例をご紹介します。データを活用して売上を伸ばしたい、コスト改善したいと考えている方は、ぜひ参考にしてみてください。
-
AIやExcelを活用したコールセンターの入電数予測の方法
コールセンターにおけるコール予測(呼量予測、forecaster)とは、お客様からの問い合わせなどセンターで受信する電話の量を予測することをいいます。 コールセンターの運用コストを増加させる要因のうち大きなものが、コミュニケーターの人件費です。コミュニケーターは顧客からの入電に応じてオペレーションの対応をするため、実際の入電数よりも多くのコミュニケーターを配置すると、対応がなく待ち状態のコミュニケーターが増えて、不要な人件費の増加に繋がります。また、逆に配置人数が少ないと呼び出し中でつながらないなどのクレームの要因になりかねません。適正な人員をコンタクトセンターに配置することで、十分な顧客満足度が提供できる状態でオペレーションを行っていることが理想です。今回は、Excelを活用したコール予測、AI(人工知能)による機械学習を用いた時系列分析で、コール予測を実現する方法をご紹介します。
-
予測分析とは?活用事例とその手法・ツールをご紹介
予測分析とは、過去の行動パターンを特定し、将来の結果を予測するために、大量のデータに数理モデルを適用する手法です。 機械学習、データマイニング、統計アルゴリズムなどの複数の組み合わせがもたらす「予測的手法」により、予測分析ツールは、単純な相関付け以上の機能を実装できます。ビジネス分野では、予測分析が以下に示すようなさまざまな用途に利活用されています。 ・需要と供給のより正確な予測コンピューターネットワークに悪影響を及ぼす脅威と潜在的問題の特定 ・保険サービスや金融サービスにおけるセキュリティリスクの低減 ・クレジットカード詐欺のリアルタイム検出 予測分析機能を組み込んだソフトウェアが増えつつあり、これはあらゆる規模の組織体でユーザーにとって身近なものになっています。予測分析はデータサイエンスや高度な分析に関する訓練を受けていないエンドユーザーにも実務上の価値をもたらします。これは、まさにすべてのユーザーが恩恵を受ける機会を提供することに値します。この概念を「データの民主化」と呼びます。誰もがデータを利用してより良い意思決定を下せるように、組織全体でデータを誰もが利用できるようにするという概念です。 本記事では、予測分析がなぜ重要なのか、予測分析の実活用例、予測分析の手法、機械学習やデータマイニングなどの他のテクノロジーとの関係、モデルの役割、予測分析を始めるにあたってのヒントについてご紹介します。