テキストマイニングやり方入門編、実活用例をご紹介
アンケートやSNS投稿などの膨大なデータから、顧客ニーズの把握や将来の予測ができるということで、近年注目されているテキストマイニング。本記事では、そのテキストマイニングの概要や活用事例、やり方を紹介します。
-
テキストマイニングとは?
『テキストマイニング』とは、文章を単語や文節に区切り、それらの出現頻度や共起関係、時系列などを分析して役に立つ情報を取り出すことです。
具体的には、「私は福岡市に住んでいる。」という文章を、自然言語処理によって「私/は/福岡市/に/住んで/いる。」のように単語を区切ります。
その後、分解した単語から、出現頻度や共起関係を分析して有用な情報を取り出すのです。
例えば、テキストマイニングによって「朝方につぶやいている人は、福岡県に住んでいる人が多い」といった情報が得られるようになります。
テキストマイニングを利用することで、 顧客のニーズを獲得できたり、将来を予測してユーザーに刺さる商品を開発したりできるようになります。テキストマイニングを導入するメリットの詳細は、以下で詳しく解説しています。
-
テキストマイニングを導入するメリット
テキストマイニングを導入するメリットは以下の3つです。
詳しくは以下で解説します。顧客のニーズを獲得できる
テキストマイニングを活用することで、顧客が本当に求めているニーズを把握できるようになります。実施したアンケートやSNSの書き込みを全て分析することは困難です。しかし、テキストマイニングを利用すれば、効率的にユーザーの声を分析できるため、素早くニーズを把握できるようになるのです。
また一般的にアンケートは設問や選択肢が設けられているため、ユーザーの声が偏ってしまいます。しかしテキストマイニングを活用すれば、設問の垣根を超えた内容を分析できるようになるため、ユーザーの真のニーズを獲得することもできるのです。
将来予測ができる
テキストマイニングを利用すれば、ただ文章データを集計・分析するだけでなく未来を予測することもできます。
時系列を加味するテキストマイニングツールを利用すれば、最近出現頻度が高くなっているキーワードを見つけられます。その結果、トレンドになりそうな商品やサービスを予測して、新商品の開発に役立てたり、生産量をコントロールしたりできるようになるのです。
データ分析の自動化によるコスト削減
テキストマイニングを活用することで、データの集計にかかっていたコストを削減できるようになります。実際に大量のデータを人間が手作業で集計・分析するとなると、多くの人件費や時間的コストがかかります。しかしテキストマイニングを利用すれば、分析が自動化されるため、大幅にコストが削減されるのです。
-
テキストマイニングの活用実例4選
顧客のニーズの察知や将来予測、データ分析のコスト削減など様々なメリットがあるテキストマイニング。企業では、どのように活用されているのでしょうか。
そこで本章では、テキストマイニングの活用事例を4つ紹介します。
経営コンサルティング企業:分析作業の効率化・顧客満足度の向上を実現
飲食店や小売店などに対して、新しい理論に基づくコンサルティングサービスを提供する本企業はアンケート調査のテキストデータをさらに活用したいと考え、テキストマイニングツールを導入しました。
テキストマイニングツールの導入後の効果
・分析作業の効率化(テキストデータをお客様へのレポートとして、短時間でまとめられるようになった)
・客観的なデータが得られるようになった(コンサルタントの個人的な分析が排除された)以降で、テキストマイニングツールの具体例を紹介します。
元気の良い挨拶を売りにしていたお店で、挨拶に関する頻度分析を行ったところ「店員の挨拶が大きくて、会話の邪魔になる」といった回答が見つかったようです。
元気の良い挨拶をよく思う方もいますが、 人によっては必要ないと思う方もいます。このように、テキストマイニングツールは課題を分析し、対策を講じる際に役に立つのです。参考:NTTデータ
総合情報サービス会社: クライアントから高い評価を得るレポート作成が可能に
マーケティングリサーチなどを手掛けている本企業は、 テキストマイニングツールを利用してアンケートの自由回答を分析。その結果、見やすく具体的なヒントが得られるレポートを作成できるようになり、クライアントから評価をいただけるようになったようです。
テキストマイニングツールの導入後の具体的な効果
ツールによっては表記の揺れなどを自動的に察知して、言葉の意味を文脈から判断してくれるものがあります。 これにより消費者の意見を正確に抽出できるようになりました。また、ユーザーが発する単語は性別や年代によって異なります。 この特徴を活用することで、属性別にどのような言葉が出現しているのかを高いレベルで調査できるようになりました。そのため、分析の精度がこれまでよりも上がったようです。
テキストマイニングを活用することで、言葉と言葉との関連性を図式化して俯瞰的に見られるようになったため、クライアントからも高い評価をもらっています。
参考:NTTデータ
カスタマーサービス専門企業: コールセンターの全通話の品質を明らかに
コールセンターのBPO(企業内の業務を外部委託すること)などを展開する本企業は、これまで人の手によって、時間をかけて分析していたオペレーターの品質評価にテキストマイニングツールを利用して、コールセンターの評価を短時間でアップさせました。
テキストマイニング導入の具体的な成果
ではどのように応対の品質を評価したのでしょうか。そもそも音声テキストには応対の際の言葉がそのまま録音されます。そこで会話において必然的に生じてしまう「あのー」や「えっと」といった言葉も、質を下げる言葉として登録しました。
また「ありがとうございます」や「恐れ入りますが」などの言葉も登録し評価材料に取り入れました。このように言葉を抽出し数値化することで、品質向上に役立てたようです。
お客様に対してきちんと敬語を使えているか、同じことは何回も言っていないか、なども客観的なデータとして、フィードバックできるようになったため、評価のエビデンスも管理しやすくなりました。
参考:NTTデータ
自動制御機器の開発を展開するメーカー:FAQ閲覧数2倍以を達成
こちらはファクトリーオートメーションに必須である、自動制御機器の開発を展開している企業の事例です。
テキストマイニングツール導入の背景
商品に関するユーザーからの質問対応のために、FAQを300件ほど自社サイトで公開していたが、その数を一気に1000件まで増やすよう指示があったようです。そこで、FAQの質を維持しながら、数を増やしていくためにテキストマイニングツールを導入しました。
テキストマイニング導入後の効果
以前までは FAQ を作成する際、文章全体に目を通す必要がありましたが、テキストを単語頻度解析にかけて上位のキーワードと関係する質問と答えを抜き出すことで、効率的にFAQを作成できるようになりました。 結果的にテキストマイニングツールを利用することで、制作効率が3倍までアップしたようです。
また単純にFAQが増えたことで、FAQ閲覧数は2万件(2013年)から5万件(2019年)に伸び、電話料の問い合わせ数は5万件(2013年)から4万1000件(2019年)に減少しました。 また電話での問い合わせが以前よりも専門的になってきたようです。
このように、テキストマイニングツールを利用すれば、FAQの制作効率が上がり、FAQ数が増えることで、結果的に電話対応の負荷の軽減も期待できます。
参考:NTTデータ
-
テキストマイニングの2つのやり方
テキストマイニングを行う方法としては、以下の2つが挙げられます。
Excelを利用する
文章を単語で区切って、単語を集計する
エクセルでは文章をそのまま分析できないため、文章データを一つ一つの単語に分解していきます。文章を単語で区切ることを、形態要素分解といいます。
JUMANやMECABなどの形態素解析できるツールを用いると、効率的に単語を分解できます。
単語で区切った後は、その単語がどれくらいの頻度で登場するのか集計します。 エクセルで集計する際は「COUNTIF関数」を利用しましょう。
ただ、 単語の数が多い場合や表記ゆれが多い場合には、集計が困難になるため注意が必要です。(※表記ゆれ:同音・同義の単語に異なる文字表記がされること 具体的には「PC」と「パソコン」など)
ワードクラウドを作成する
そもそもワードクラウドとは、 キーワードの出現度の高さを視覚的に表示する方法です。
※ワードクラウドイメージ
このワードクラウドを作成する際は、専用のサービスを利用するのが最も手っ取り早いです。ただ、プログラミング技術がある方は、自作することも可能なようです。ただ、効率的に作成したいのであれば、専用のサービスを利用することをおすすめします。特に株式会社ファンブライトラボのワードクラウドサービスやExcelアドインの「E2D3」はおすすめです。
このように使い方を工夫すれば、エクセルでもテキストマイニングは可能です。しかしエクセルを活用するとなると、関数を覚える必要があったり、結局外部ツールを使う必要があったりと、負担が大きいのが事実です。
そこで本章では、専用ツールを使ってテキストマイニングを行う方法を紹介します。
テキストマイニングの専用ツールを利用する(MartixFlow)
本章では、専用ツールを利用してテキストマイニングを活用しながらSNS感情分析を行う方法を紹介します。
SNSの投稿から感情を分析しニーズを捉える
SNSの投稿から感情を読み取ることができれば、まだ誰も気づいてない消費者のニーズを発見して、ユーザーに刺さる商品やサービスを開発できるようになります。
ただ多数のSNS投稿を1つずつ確認して、意味を解釈することは地道で時間のかかる作業です。
そこで注目されているのが、SNS感情分析。このSNS感情分析ではテキストマイニングを活用します。テキストマイニングによって取り出した要素を利用して、AI がSNSの投稿の感情を読み取り、感情ごとに分類します。テキストマイニングとAIを利用して、カテゴリーを分類することで業務効率化を実現しながら精度の高い分析ができるようになるのです。
次章では、テキストマイニングを活用したSNS感情分析をMartixFlowという専用ツールで行う方法を紹介します。
MartixFlowでSNS感情分析を行う
そもそもMartixFlowとは、プログラミングの知識がない方でもAIを簡単に作成できるAI活用プラットフォームです。本ツールを利用することで、テキストとテキストマイニングをカテゴリーごとに分類する作業を代わりに行ってくれます。
実際にMartixFlowを利用して、 テキストマイニングを行った結果が以下の通りです。
さらに予測結果では、実際にテキストがカテゴリーごとに分類された結果をみることができます。
またSNSのインサイト分析を行う際に本ツールを利用すると、SNSの投稿文がどの感情に分類されるかを予測結果から確認することもできるようになります。
ちなみにMartixFlowを利用することで、SNSを分析できるようになるだけでなく、報告書や論文を分析したり、問い合わせ内容を自動で分類したりすることもできるようになるのです。
以下の記事では、MartixFlowの利用方法を詳しく解説しています。
また、MartixFlowは無償トライアルも実施しています。実際に使ってみて、本ツールの魅力を体感してみたい方はぜひ。
編集部Pickup記事
-
ノーコードでAIを開発する方法とは?開発事例・無料の開発プラットフォームを紹介
ここ数年、国内外の開発者の間で「ノーコード(NoCode)」という言葉がよく聞かれます。 ノーコードとは、文字通りコードいらずでWebサイトやWebサービスを開発する手法のことです。 このノーコードの開発手法を使って、AI(人工知能)を開発しようとする動きが出てきています。 本記事では、ノーコードでAIを開発して自社課題を解決したい方に向けて、ノーコードでどんなことができるのかを解説していきます。 ノーコードを使ってAIを開発した事例も紹介しているので、ぜひ参考にしてみてください。
-
機械学習のビジネスにおける活用事例を徹底解説
様々な分野・企業で、AIや機械学習の活用が進んでいます。 iPhoneのSiriやGoogleのアレクサなど、日常生活にも溶け込んでいるほどです。 AIにデータを機械学習させれば、膨大な時間がかかる作業も分析も一瞬で終えることができます。 AIは学習させるデータでどんな使い方もできるため、その可能性は無限大です。 本記事では、AIや機械学習をビジネスに活用する方法や、導入事例をご紹介します。
-
AIツール・開発プラットフォームおすすめ13選!無料AIツールも?
AI(人工知能)を使ったツールやアプリは、ここ数年で急激に増えました。身近なところだと、有名画家風のイラストが作成できるアプリや音声読み上げソフトなど、一度は耳にしたことがある方もいるのではないでしょうか。 企業においても課題解決ができるAIツールや、AIを開発できるプラットフォームへ注目が集まっています。ですが、AIツールと一口にいっても、開発できるAIの種類や解決できる課題も様々です。 本記事では、AIを開発できるプラットフォームや、無料で使える便利なAIツールをご紹介します。AIツールを使ってどんなことができるのか、ツールによる違いを知りたい方は必見です。
-
AIによる需要予測の仕組みとは?導入事例・費用・アルゴリズムを解説
過去の販売データを元に商品の発注数や売れ行きを予測するのは、小売業界では当たり前に行われています。 ですが、経験や勘に頼った予測は個人の力量に依存するため、予測に再現性がありません。予測の精度も人によってバラバラなため、常に高い精度で予測することは難しいです。 こうした課題を解決する方法の1つとして、AIを使った需要予測が注目されています。AIを使うことで、スキルに依存しない高精度で需要予測が期待されているのです。 本記事では、AIを使った需要予測の仕組みや導入事例について解説していきます。需要予測をして在庫管理の最適化や売上増加を狙っている方は、ぜひ参考にしてみてください。
-
製造業におけるAI活用事例23選!各社の導入方法・例をご紹介
ここ数年でAi技術は格段に進化を遂げています。様々な領域でAIの活用が進んでいますが、製造業ではどのくらいAIの導入が進んでいるのでしょうか。製造現場での実用化にはいまだ課題も残っています。AIを活用できる人材がいない、AIの導入方法がわからず、活用が進んでいない企業も多いのではないでしょうか。 この記事では、実際にその仕組みや導入のメリット、成功・失敗事例を紹介していきます。製造業でAIを導入するうえでの注意点についても解説していますので、ぜひ参考にしてください。
-
ディープラーニング(深層学習)とは?AI・機械学習との違いを簡単に解説
ディープラーニング、AI、機械学習。誰しも、テレビや本で一度は耳にしたことがあると思います。 ですがこれらが何を指しているのか、なぜ注目を集めているのか知っている方は少ないのではないでしょうか。 本記事ではAIを学んだことがない方向けに、ディープラーニングとは何なのかを簡単に解説します。 ディープラーニングと機械学習の違いがわからない方や、ディープラーニングの活用事例を知りたい方も必見です。
関連した事例
-
予測分析ツールおすすめ7選比較!AIで予測できること・無料ツールはある?
将来の売上や株価を予測することができれば、ビジネスや投資において非常に有利に動けます。しかし、人の勘や経験に頼った予測には限界があり、正確な予測をすることは困難です。 そこで、あらゆる業界で「予測分析ツール」が注目されています。予測分析ツールを使えば、膨大なデータを分析し、過去の傾向をもとに未来を予測できます。さらに、機械学習や人工知能を使った予測分析ツールを活用すれば、誤差を減らしてより高い精度で予測を行うことができます。 本記事では、予測分析ツールでどんなことが予測できるのか、おすすめの予測分析ツールをご紹介します。AIやツールを使った予測に興味がある方は、ぜひ参考にしてみてください。
-
AI開発外注の費用相場・期間は?おすすめ開発会社を解説
AIを開発したいと思った時にまずぶつかる壁は、「自社内で開発するか外注するか」です。 社内に開発人材がいる場合もいない場合も、AI開発の外注は選択肢の1つとして考えられます。 AI開発の外注にはメリット・デメリットがあるため、AI開発において重視する内容によって外注が最適かどうか変わってきます。 本記事では、AI開発を外注しようか検討している方に向けて、AI開発の外注にかかるコストやメリット・デメリットを解説します。さらに、AI開発に強いおすすめの外注先もご紹介するので、開発会社選びの参考にしてみてください。
-
ノーコードでAIを開発する方法とは?開発事例・無料の開発プラットフォームを紹介
ここ数年、国内外の開発者の間で「ノーコード(NoCode)」という言葉がよく聞かれます。 ノーコードとは、文字通りコードいらずでWebサイトやWebサービスを開発する手法のことです。 このノーコードの開発手法を使って、AI(人工知能)を開発しようとする動きが出てきています。 本記事では、ノーコードでAIを開発して自社課題を解決したい方に向けて、ノーコードでどんなことができるのかを解説していきます。 ノーコードを使ってAIを開発した事例も紹介しているので、ぜひ参考にしてみてください。
-
プログラミングでAIを開発する方法!必須のプログラミング言語・入門知識を解説
近年急速に進化しているAI(人工知能)。 AIを活用すれば、今まで大量の人と時間を投下していた業務も効率よく精度高く遂行できます。 人と同じような動きができるためすごい存在に思えるAIですが、プログラミングを学べば初心者でも開発が可能です。 本記事では、プログラミングをしてAIを開発する方法やAI開発におすすめのプログラミング言語をご紹介します。
-
機械学習(ML)とは? メリット・種類・業界や課題別の活用例・実施方法を解説
機械学習(Machine Learning)とは、コンピューター(Machine)が与えられた大量のデータを処理・分析することでルールやパターンを発見する技術・手法のことです。学習の結果明らかになったルール・パターンを現状に当てはめることで、精度の高い将来予測が可能となります。 高度なコンピューターを使用することで、人間の脳では処理しきれない複雑な要素を加味した分析・学習が可能となりました。その結果、近年ではさまざまな領域において人間による作業の精度向上・効率化に役立てられています。自動運転や医療、人間の購買行動の分析など、さまざまなビジネス領域で機械学習が実用化されており、今後のマーケットで生き残っていくためには必須の技術になりつつあるといえるでしょう。 本記事では、機械学習(ML)の概要やメリット、種類に加え、業種別・課題別の活用例を紹介します。実際に取り入れる際の作業フローも紹介しているので、機械学習の活用に興味がある方はぜひ参考にしてみてください。
-
AIやExcelを活用したコールセンターの入電数予測の方法
コールセンターにおけるコール予測(呼量予測、forecaster)とは、お客様からの問い合わせなどセンターで受信する電話の量を予測することをいいます。 コールセンターの運用コストを増加させる要因のうち大きなものが、コミュニケーターの人件費です。コミュニケーターは顧客からの入電に応じてオペレーションの対応をするため、実際の入電数よりも多くのコミュニケーターを配置すると、対応がなく待ち状態のコミュニケーターが増えて、不要な人件費の増加に繋がります。また、逆に配置人数が少ないと呼び出し中でつながらないなどのクレームの要因になりかねません。適正な人員をコンタクトセンターに配置することで、十分な顧客満足度が提供できる状態でオペレーションを行っていることが理想です。今回は、Excelを活用したコール予測、AI(人工知能)による機械学習を用いた時系列分析で、コール予測を実現する方法をご紹介します。
-
予測分析とは?活用事例とその手法・ツールをご紹介
予測分析とは、過去の行動パターンを特定し、将来の結果を予測するために、大量のデータに数理モデルを適用する手法です。 機械学習、データマイニング、統計アルゴリズムなどの複数の組み合わせがもたらす「予測的手法」により、予測分析ツールは、単純な相関付け以上の機能を実装できます。ビジネス分野では、予測分析が以下に示すようなさまざまな用途に利活用されています。 ・需要と供給のより正確な予測コンピューターネットワークに悪影響を及ぼす脅威と潜在的問題の特定 ・保険サービスや金融サービスにおけるセキュリティリスクの低減 ・クレジットカード詐欺のリアルタイム検出 予測分析機能を組み込んだソフトウェアが増えつつあり、これはあらゆる規模の組織体でユーザーにとって身近なものになっています。予測分析はデータサイエンスや高度な分析に関する訓練を受けていないエンドユーザーにも実務上の価値をもたらします。これは、まさにすべてのユーザーが恩恵を受ける機会を提供することに値します。この概念を「データの民主化」と呼びます。誰もがデータを利用してより良い意思決定を下せるように、組織全体でデータを誰もが利用できるようにするという概念です。 本記事では、予測分析がなぜ重要なのか、予測分析の実活用例、予測分析の手法、機械学習やデータマイニングなどの他のテクノロジーとの関係、モデルの役割、予測分析を始めるにあたってのヒントについてご紹介します。
-
ディープラーニング(深層学習)とは?概要や、業界・課題別の活用例・導入手法を解説
AI(人工知能)という言葉は昔からありましたが、近年いよいよ本格的に生活のなかで活用されるようになってきました。そのなかで重要な役割を果たしているのがディープラーニング(深層学習)です。従来は機械に任せるのが難しかったケースにも対応できるようになり、さまざまな形で日常生活やビジネスに変革をもたらしています。 しかし、ディープラーニングがどのような仕組みなのか、具体的に理解している方は少ないでしょう。本記事では、ディープラーニング(深層学習)の仕組みや、AI・機械学習との違い、さらに業種別のビジネスへの活用例を紹介します。 ディープラーニングを事業活動に活かしたいとお考えの経営者・事業担当者の方は、ぜひ参考にしてみてください。
-
製造業におけるAI活用事例23選!各社の導入方法・例をご紹介
ここ数年でAi技術は格段に進化を遂げています。様々な領域でAIの活用が進んでいますが、製造業ではどのくらいAIの導入が進んでいるのでしょうか。製造現場での実用化にはいまだ課題も残っています。AIを活用できる人材がいない、AIの導入方法がわからず、活用が進んでいない企業も多いのではないでしょうか。 この記事では、実際にその仕組みや導入のメリット、成功・失敗事例を紹介していきます。製造業でAIを導入するうえでの注意点についても解説していますので、ぜひ参考にしてください。