AI作成に必要なデータは量より質?データの量・質とAI構築例を解説
「機械学習のモデルを作るためにどれだけのデータが必要ですか」という質問についてよく聞かれます。 AI(人工知能)、機械学習や深層学習を構築する場合に、必ず学習データが必要になってきますが、一般的には「ビッグデータ」と呼ばれる量のデータは、どれくらいのデータ数が求められるのでしょうか? 実は学習においてはデータの量だけでなく、質も重要です。 どの程度の質で、どのくらいのデータを集めればいいのか?という疑問を持っている方も多いため、今回はそんな学習データについてまとめてみました。
-
目次
AI・機械学習を行うために必要なデータ量
データが少ない場合のAI構築方法
AIを簡単に、短時間で作って確かめる
プログラミング不要でAI予測モデルが構築できる「MatrixFlow」 -
AI・機械学習を行うために必要なデータ量
機械学習のデータについて語るとき、しばしば「ゴミを入れたら、ゴミしか出てこない」と言われることがあります。どのようなデータを学習させるかによって、コンピュータがどのようなパターンを抽出するかが決まり、未知の情報を入力したときの出力結果がこれにより変わってくるためです。
データ・特徴量の質と量
機械学習の際、データは数だけでなく、質の良いデータであることも重要です。
この入力データの良し悪しを決める要因の1つが、特徴量です。
特徴量とは、分析すべきデータや対象物の特徴・特性を定量的に表した数値です。
説明変数とも言われます。特徴量について、簡単な例を使って説明します。 あなたが芸能プロダクションのスカウト担当になったとします。 多くの一般の人が好む芸能人の特徴はなにか、声には、髪型などの見た目にはどんな「特徴」があるか、性格にはどんな「特徴」があるか、などいろいろなポイントがあります。
予測したいのは、「一般大衆が好む芸能人」という「人物モデル」です。
今まで支持されてきた芸能人は世の中に沢山いますが、その芸能人像には、ある法則があるのではないか、その法則に「強く関係している」人物の特徴を数値化したものが特徴量と考えます。
このような人物をスカウトすれば、一般大衆に好まれる芸能人をデビューさせることも夢ではないかもしれません。
このように、ディープラーニングなどの機械学習による予測や判断の精度を高めるためには、必要のない特徴量を見極め、必要な特徴量のみを適切に選択することが重要となります。
もちろん、特徴量自体の量が少ないと、コンピュータはやはり十分なパターンを学習ができませんが、ここで注意が必要なのは、特徴量の質が良くないと、せっかくデータを学習させても精度の高いモデルにはならず、見当違いの結果を出力することになってしまいます。
特徴量の質は、どんな特徴量を選択するかはもちろん、特徴量自体のデータの形式がきちんと揃っていることなどによっても変わってきます。
上記の芸能人モデルの構築で言えば、声や髪型などのいわゆる外見は確かに特徴量に関係してくるとしても、実際には独特の雰囲気やキャラクター性など、もっと多くの要因が関わって一般大衆が好むかどうかは決まるものです。
闇雲に特徴量が多ければ良いというわけではありませんが、関連性の高いより多くの特徴量を組み合わせ、高次のデータを学習させることでAIの精度も上がっていきます。ノイズ除去と特徴量選択
もう一つ重要な点は、学習用データのノイズが学習モデルの精度向上に関係ないばかりか、場合によっては精度を下げてしまうことがある点です。
データのノイズを除去することにより、コンピュータが予測対象に関連のある特徴のみを学習できるようになるため、予測の精度の向上が期待できます。また適切な特徴量を選択することによって、モデルの予測精度の向上が期待できること以外にも下記の効果を見込むことができます。
・モデルの構造を単純化することで理解しやすくなる
・学習データ量を縮小することによって学習にかかる時間を短縮できる
・過学習を防ぐことができる -
データが少ない場合のAI構築方法
ある解決したい課題があったとき、AIを構築して課題解決を進めることがあります。
その際、どんなアルゴリズムで解くか、そのために必要になってくるデータの量はどれぐらい集めればいいのか、どのように情報を取捨選択すれば良いのか、など検討すべきポイントはたくさんあります。このような場合は、まずは以下の点に注意しAIを構築してみましょう。
1. どれぐらいのデータ量が必要だろうか。 まずは、あるデータで試してみましょう!試行錯誤がポイントです。
2. データを訓練用とテスト用に分けて学習させて、まずモデルを作りましょう。
3. 学習モデルができたら実際に動かして、その結果を見た上で、どれくらい正解しているかによってモデルの良し悪しを判断しましょう。
4. もし結果があなたの期待以下であったなら、もっと他にデータはないか、新しいデータを集めてテストの値に満足いくまで、上記2と3を繰り返しましょう。あるデータサイエンティストの方によると、少ないクラスが100超えていたら、自身が関わる分野の分析で、まずチャレンジしてみるそうです。実際は、1000件あるとまずは安心というスタンスです。
さらに、列数とのバランスも重要で、例えば1万行だとするとその10%以下である1000列が限界、1000行なら100列までしかどんなに頑張っても使えないなどという判断もしています。またビジネスやサイエンスにおいてAI活用するには、やはりドメイン知識に照らし合わせての何件くらいだとパターンが出やすいかといった要素も重要になります。
対象が季節性がある現象であるのにも関わらず、半年分のデータしかないといった状況は避けなければいけません。
また、逆に現象にシンプルな物理方程式が隠れているような場合は、少ないデータ数でもしっかりと傾向がわかったりします。実際にAIを構築して課題を解決する際、一番重要なのが、その結果によって最終的な目的が達成できるかを判断することになります。
AIを構築して課題を解決する以上、ユーザーに対してのサービスを向上させたい、売上を上げたい、かかっている工数を削減したい、などの目的がまずはあるはずです。
これをAIで解決できなければ、いくら精度の良いAIを作っても意味がなくなってしまいます。実際のところ、どれくらいのデータ量が必要かという問いに対しては、正解はありません。
ただし、データが少なくても、最初は精度が悪いかもしれませんが、AIは作れます。まずはデータを集めないと・・・と言って闇雲にデータを集めて失敗されている会社様をたくさん見てきました。 まずは、少ないデータでも、目標を立てて、いかに早くスタートできるかが勝負です。
まずはいったん形を作って、走りながら方向を修正していくということも、スピードが求められるビジネスには必須です。 -
AIを簡単に、短時間で作って確かめる
まず無料で公開されているプロジェクトやデータセットを探しましょう。
もちろん解決したい問題がどの分野に属するのかを認識することが重要です。
そして、プログラミングせずにAIが作れる、MatrixFlowを使って実際にAIを作ってみましょう!MatrixFlowのお役立ち記事をご紹介します。
今回の記事では、プログラミングを使わずにAIを作れるMatrixFlowを使って、トラックの「空気圧システム(APS)」の故障を予測します。
APSはタイヤの空気圧をセンサーから取得することができます。
しかし、そのセンサーに不具合や故障があると人命に関わる事故に起きるかもしれません。
そのため、AIを使ってAPSの故障を予測することは、事故を未然に防ぐために重要なことです。ちなみに今回のAIでは分類という手法を用います。
分類とは、予測対象のデータがどのグループに所属するのかを判断する手法です。
この手法では、AIは分類アルゴリズムを用いて、特定のグループの共通点を識別します。
そして、それらの共通点と予測対象のデータを比較し、特定のグループに属するかどうかを判断します。この結果によって、同じ傾向を持つグループへの施策を考えることができます。
例えば、共通項を持つグループへのマーケティングを考えたり、故障しやすいグループへの改善策を考えたりすることができます。ノンプログラミングでAIを作成する流れは以下です。
ここでは、AIを作成する全体的な流れを簡単に説明していきます。
まず、AIを作成するにはデータセットが必要です。AIはデータセットのデータをもとに学習や予測をしていきます。
次にどの列をAIに予測してもらいたいかを選択します。ここで選択しなかった列は、AIが予測をするときの判断材料となり、どのくらい重要な判断材料だったかを学習結果で比べることができます。
そして、AIが利用できるデータの形にするために、データの前処理を行います。前処理では欠損値の修正や文字のデータの数値化をすることができます。
データの準備ができれば、レシピの作成を行います。レシピは、AIが処理を行う手順を示すもので、MatrixFlowではブロックとブロックを結ぶだけで作成することができます。
最後にAIに学習をさせます。 -
プログラミング不要でAI予測モデルが構築できる「MatrixFlow」
MatrixFlowはプログラミング不要のAI構築プラットフォームです。
AI構築の際のアルゴリズムの開発は、処理単位のブロックをドラッグ&ドロップし、繋ぐことで手軽に実現可能です。
またデータの管理、作成したアルゴリズムの管理などのAI構築に関わるすべての工程をプラットフォーム上で一元管理することが特徴です。
MatrixFlowを使用することで、AI開発においてはさらなる開発の早期化、開発費用の低減が期待されます。MatrixFlowは、あらゆる業種・業界のお客様に使用していただいており、お客様の声を元に開発を続けているため、開発ノウハウがレシピ、およびその組み合わせのテンプレートとしてプラットフォーム上に蓄積されています。
また、MatrixFlowには、さまざまなタイプのすでに構築されたAIのテンプレートのご用意もありますので、お客様の課題にあったテンプレートでぜひ一度AI構築にトライしてみてはいかがでしょうか。
ぜひ、詳細はお問い合わせください。
編集部Pickup記事
-
ノーコードでAIを開発する方法とは?開発事例・無料の開発プラットフォームを紹介
ここ数年、国内外の開発者の間で「ノーコード(NoCode)」という言葉がよく聞かれます。 ノーコードとは、文字通りコードいらずでWebサイトやWebサービスを開発する手法のことです。 このノーコードの開発手法を使って、AI(人工知能)を開発しようとする動きが出てきています。 本記事では、ノーコードでAIを開発して自社課題を解決したい方に向けて、ノーコードでどんなことができるのかを解説していきます。 ノーコードを使ってAIを開発した事例も紹介しているので、ぜひ参考にしてみてください。
-
機械学習のビジネスにおける活用事例を徹底解説
様々な分野・企業で、AIや機械学習の活用が進んでいます。 iPhoneのSiriやGoogleのアレクサなど、日常生活にも溶け込んでいるほどです。 AIにデータを機械学習させれば、膨大な時間がかかる作業も分析も一瞬で終えることができます。 AIは学習させるデータでどんな使い方もできるため、その可能性は無限大です。 本記事では、AIや機械学習をビジネスに活用する方法や、導入事例をご紹介します。
-
AIツール・開発プラットフォームおすすめ13選!無料AIツールも?
AI(人工知能)を使ったツールやアプリは、ここ数年で急激に増えました。身近なところだと、有名画家風のイラストが作成できるアプリや音声読み上げソフトなど、一度は耳にしたことがある方もいるのではないでしょうか。 企業においても課題解決ができるAIツールや、AIを開発できるプラットフォームへ注目が集まっています。ですが、AIツールと一口にいっても、開発できるAIの種類や解決できる課題も様々です。 本記事では、AIを開発できるプラットフォームや、無料で使える便利なAIツールをご紹介します。AIツールを使ってどんなことができるのか、ツールによる違いを知りたい方は必見です。
-
AIによる需要予測の仕組みとは?導入事例・費用・アルゴリズムを解説
過去の販売データを元に商品の発注数や売れ行きを予測するのは、小売業界では当たり前に行われています。 ですが、経験や勘に頼った予測は個人の力量に依存するため、予測に再現性がありません。予測の精度も人によってバラバラなため、常に高い精度で予測することは難しいです。 こうした課題を解決する方法の1つとして、AIを使った需要予測が注目されています。AIを使うことで、スキルに依存しない高精度で需要予測が期待されているのです。 本記事では、AIを使った需要予測の仕組みや導入事例について解説していきます。需要予測をして在庫管理の最適化や売上増加を狙っている方は、ぜひ参考にしてみてください。
-
製造業におけるAI活用事例23選!各社の導入方法・例をご紹介
ここ数年でAi技術は格段に進化を遂げています。様々な領域でAIの活用が進んでいますが、製造業ではどのくらいAIの導入が進んでいるのでしょうか。製造現場での実用化にはいまだ課題も残っています。AIを活用できる人材がいない、AIの導入方法がわからず、活用が進んでいない企業も多いのではないでしょうか。 この記事では、実際にその仕組みや導入のメリット、成功・失敗事例を紹介していきます。製造業でAIを導入するうえでの注意点についても解説していますので、ぜひ参考にしてください。
-
ディープラーニング(深層学習)とは?AI・機械学習との違いを簡単に解説
ディープラーニング、AI、機械学習。誰しも、テレビや本で一度は耳にしたことがあると思います。 ですがこれらが何を指しているのか、なぜ注目を集めているのか知っている方は少ないのではないでしょうか。 本記事ではAIを学んだことがない方向けに、ディープラーニングとは何なのかを簡単に解説します。 ディープラーニングと機械学習の違いがわからない方や、ディープラーニングの活用事例を知りたい方も必見です。
関連した事例
-
予測分析ツールおすすめ7選比較!AIで予測できること・無料ツールはある?
将来の売上や株価を予測することができれば、ビジネスや投資において非常に有利に動けます。しかし、人の勘や経験に頼った予測には限界があり、正確な予測をすることは困難です。 そこで、あらゆる業界で「予測分析ツール」が注目されています。予測分析ツールを使えば、膨大なデータを分析し、過去の傾向をもとに未来を予測できます。さらに、機械学習や人工知能を使った予測分析ツールを活用すれば、誤差を減らしてより高い精度で予測を行うことができます。 本記事では、予測分析ツールでどんなことが予測できるのか、おすすめの予測分析ツールをご紹介します。AIやツールを使った予測に興味がある方は、ぜひ参考にしてみてください。
-
AI開発外注の費用相場・期間は?おすすめ開発会社を解説
AIを開発したいと思った時にまずぶつかる壁は、「自社内で開発するか外注するか」です。 社内に開発人材がいる場合もいない場合も、AI開発の外注は選択肢の1つとして考えられます。 AI開発の外注にはメリット・デメリットがあるため、AI開発において重視する内容によって外注が最適かどうか変わってきます。 本記事では、AI開発を外注しようか検討している方に向けて、AI開発の外注にかかるコストやメリット・デメリットを解説します。さらに、AI開発に強いおすすめの外注先もご紹介するので、開発会社選びの参考にしてみてください。
-
ノーコードでAIを開発する方法とは?開発事例・無料の開発プラットフォームを紹介
ここ数年、国内外の開発者の間で「ノーコード(NoCode)」という言葉がよく聞かれます。 ノーコードとは、文字通りコードいらずでWebサイトやWebサービスを開発する手法のことです。 このノーコードの開発手法を使って、AI(人工知能)を開発しようとする動きが出てきています。 本記事では、ノーコードでAIを開発して自社課題を解決したい方に向けて、ノーコードでどんなことができるのかを解説していきます。 ノーコードを使ってAIを開発した事例も紹介しているので、ぜひ参考にしてみてください。
-
ディープラーニング(深層学習)とは?AI・機械学習との違いを簡単に解説
ディープラーニング、AI、機械学習。誰しも、テレビや本で一度は耳にしたことがあると思います。 ですがこれらが何を指しているのか、なぜ注目を集めているのか知っている方は少ないのではないでしょうか。 本記事ではAIを学んだことがない方向けに、ディープラーニングとは何なのかを簡単に解説します。 ディープラーニングと機械学習の違いがわからない方や、ディープラーニングの活用事例を知りたい方も必見です。
-
プログラミングでAIを開発する方法!必須のプログラミング言語・入門知識を解説
近年急速に進化しているAI(人工知能)。 AIを活用すれば、今まで大量の人と時間を投下していた業務も効率よく精度高く遂行できます。 人と同じような動きができるためすごい存在に思えるAIですが、プログラミングを学べば初心者でも開発が可能です。 本記事では、プログラミングをしてAIを開発する方法やAI開発におすすめのプログラミング言語をご紹介します。
-
機械学習(ML)とは? メリット・種類・業界や課題別の活用例・実施方法を解説
機械学習(Machine Learning)とは、コンピューター(Machine)が与えられた大量のデータを処理・分析することでルールやパターンを発見する技術・手法のことです。学習の結果明らかになったルール・パターンを現状に当てはめることで、精度の高い将来予測が可能となります。 高度なコンピューターを使用することで、人間の脳では処理しきれない複雑な要素を加味した分析・学習が可能となりました。その結果、近年ではさまざまな領域において人間による作業の精度向上・効率化に役立てられています。自動運転や医療、人間の購買行動の分析など、さまざまなビジネス領域で機械学習が実用化されており、今後のマーケットで生き残っていくためには必須の技術になりつつあるといえるでしょう。 本記事では、機械学習(ML)の概要やメリット、種類に加え、業種別・課題別の活用例を紹介します。実際に取り入れる際の作業フローも紹介しているので、機械学習の活用に興味がある方はぜひ参考にしてみてください。
-
データドリブン経営とは?成功事例からわかる必要性・メリット解説
ビジネスでデータを活用するのは、今やどの企業も当たり前に行なっています。 ですが、データを効果的に活用できている企業はあまり多くありません。 データを部分的にしか活用できていない、人によってデータ活用のレベルが異なる企業が多いのではないでしょうか。反対に、データを活用しようと意気込んで収集した結果、膨大なデータを持て余している場合も見受けられます。 このように、データを有効活用できていないと感じる方々に知っていただきたいのが、「データドリブン経営」という考え方です。本記事では、データドリブン経営とは何かを簡単に解説し、データドリブンで数字改善した成功事例をご紹介します。データを活用して売上を伸ばしたい、コスト改善したいと考えている方は、ぜひ参考にしてみてください。
-
AIやExcelを活用したコールセンターの入電数予測の方法
コールセンターにおけるコール予測(呼量予測、forecaster)とは、お客様からの問い合わせなどセンターで受信する電話の量を予測することをいいます。 コールセンターの運用コストを増加させる要因のうち大きなものが、コミュニケーターの人件費です。コミュニケーターは顧客からの入電に応じてオペレーションの対応をするため、実際の入電数よりも多くのコミュニケーターを配置すると、対応がなく待ち状態のコミュニケーターが増えて、不要な人件費の増加に繋がります。また、逆に配置人数が少ないと呼び出し中でつながらないなどのクレームの要因になりかねません。適正な人員をコンタクトセンターに配置することで、十分な顧客満足度が提供できる状態でオペレーションを行っていることが理想です。今回は、Excelを活用したコール予測、AI(人工知能)による機械学習を用いた時系列分析で、コール予測を実現する方法をご紹介します。
-
予測分析とは?活用事例とその手法・ツールをご紹介
予測分析とは、過去の行動パターンを特定し、将来の結果を予測するために、大量のデータに数理モデルを適用する手法です。 機械学習、データマイニング、統計アルゴリズムなどの複数の組み合わせがもたらす「予測的手法」により、予測分析ツールは、単純な相関付け以上の機能を実装できます。ビジネス分野では、予測分析が以下に示すようなさまざまな用途に利活用されています。 ・需要と供給のより正確な予測コンピューターネットワークに悪影響を及ぼす脅威と潜在的問題の特定 ・保険サービスや金融サービスにおけるセキュリティリスクの低減 ・クレジットカード詐欺のリアルタイム検出 予測分析機能を組み込んだソフトウェアが増えつつあり、これはあらゆる規模の組織体でユーザーにとって身近なものになっています。予測分析はデータサイエンスや高度な分析に関する訓練を受けていないエンドユーザーにも実務上の価値をもたらします。これは、まさにすべてのユーザーが恩恵を受ける機会を提供することに値します。この概念を「データの民主化」と呼びます。誰もがデータを利用してより良い意思決定を下せるように、組織全体でデータを誰もが利用できるようにするという概念です。 本記事では、予測分析がなぜ重要なのか、予測分析の実活用例、予測分析の手法、機械学習やデータマイニングなどの他のテクノロジーとの関係、モデルの役割、予測分析を始めるにあたってのヒントについてご紹介します。